Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
Phytother Res ; 38(7): 3489-3508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695373

RESUMEN

Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1ß, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1ß, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aß1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-ß, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.


Asunto(s)
Lipopolisacáridos , Trastornos de la Memoria , Microglía , FN-kappa B , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Granada (Fruta) , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Ratones , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Granada (Fruta)/química , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Polifenoles/farmacología , Péptidos beta-Amiloides , Línea Celular , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Ratones Endogámicos C57BL , Conducta Animal/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas
2.
Nanomedicine (Lond) ; 19(8): 689-708, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38348681

RESUMEN

Background: The effectiveness of a drug is dependent on its accumulation at the site of therapeutic action, as well as its time in circulation. The aim of the research was the creation of stable albumin/tannin (punicalagin, punicalin) particles, which might serve for the delivery of medicines. Methods: Numerous chromatographic and analytical methods, docking analyses and in vivo testing were applied and used. Results: Stable tannin-albumin/medicine particles with a diameter of ∼100 nm were obtained. The results of in vivo experiments proved that tannin-albumin particles are more stable than albumin particles. Conclusion: Based on the experiments and docking analyses, these stable particles can carry an extended number of medicines, with diverse chemical structures.


Asunto(s)
Extractos Vegetales , Taninos , Extractos Vegetales/química , Albúminas , Fagocitosis , Antioxidantes , Portadores de Fármacos
3.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373021

RESUMEN

Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.Communicated by Ramaswamy H. Sarma.

4.
Heliyon ; 9(4): e15434, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101633

RESUMEN

Background: Acute lung injury (ALI) remains a significant cause of morbidity and mortality in critically ill patients. Novel therapies interfering with the inflammatory response has been an area of focus for infectious disease treatment. Punicalin has shown strong anti-inflammatory and antioxidative properties; however, its effect in ALI has not been previously explored. Purpose: To investigate the effects of punicalin in lipopolysaccharide (LPS)-induced ALI and explore the underlying mechanisms. Methods: LPS (10 mg/kg) was administered intratracheally to create the ALI model in mice. Punicalin (10 mg/kg) was administered intraperitoneally shortly after LPS to investigate survival rate, lung tissue pathological injury, oxidative stress, levels of inflammatory cytokines in BALF and lung tissue, neutrophil extracellular trap (NET) formation and its effects on NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. In vitro studies were performed to evaluate the inflammatory cytokine release and NET formation in LPS-induced (1 µg/ml) and punicalin-treated mouse neutrophils derived from the bone marrow. Results: In vivo, punicalin reduced mortality, lung injury score, lung wet-to-dry (W/D) weight ratio, protein concentrations in BALF and malondialdehyde (MDA) levels in lung tissues, and increased superoxide dismutase (SOD) levels in lung tissues of LPS-induced ALI mice. Increased secretion of TNF-α, IL-1ß, and IL-6 in the BALF and the lungs of ALI mice was reversed by punicalin, whereas IL-10 was upregulated. Neutrophil recruitment and NET formation were also decreased by punicalin. Inhibition of NF-κB and MAPK signaling pathways was observed in punicalin-treated ALI mice. In vitro co-incubation with punicalin (50 µg/ml) inhibited the production of inflammatory cytokines and NET formation in LPS-treated neutrophils derived from mouse bone marrow. Conclusion: Punicalin reduces inflammatory cytokine production, prevents neutrophil recruitment and NET formation, and inhibits the activation of NF-κB and MAPK signaling pathways in LPS-induced ALI.

5.
Int J Biol Macromol ; 213: 195-209, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35597381

RESUMEN

Historically, people have been using pomegranate to alleviate many disease conditions. Pomegranate is known for its antiinflammatory, antioxidant, neuroprotective, anticancer, and antibacterial properties. In the current study, we examined effects of 8 dietary phenolics present in pomegranate (DPPs)-cyanidin-3-glucoside, cyanin chloride, delphinidin-3-glucoside, delphinidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonin chloride, punicalagin, and punicalin-on Escherichia coli ATP synthase and cell growth. DPPs caused complete or near complete (89%-100%) inhibition of wild-type E. coli ATP synthase and partial (5%-64%) inhibition of mutant enzymes αR283D, αE284R, ßV265Q, and γT273A. Growth inhibition of wild-type, null, and mutant strains in the presence of DPPs were lower than that of isolated wild-type and mutant ATP synthase. On a molar scale, cyanin chloride was the most potent, and pelargonidin-3-glucoside was the least effective inhibitor of wild-type ATP synthase. Partial inhibition of mutant enzymes confirmed that αR283D, αE284R, ßV265Q, and γT273A are essential in the formation of the phytochemical binding site. Our results establish that DPPs are potent inhibitors of wild-type E. coli ATP synthase and that the antimicrobial nature of DPPs can be associated with the binding and inhibition of microbial ATP synthase. Additionally, selective inhibition of microbial ATP synthase by DPPs is a useful method to combat antimicrobial resistance.


Asunto(s)
Escherichia coli , Granada (Fruta) , Adenosina Trifosfato/farmacología , Antibacterianos/farmacología , Cloruros , Humanos , Fenoles/farmacología
6.
Anal Bioanal Chem ; 414(13): 3971-3985, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35419694

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2 , Sudáfrica , Glicoproteína de la Espiga del Coronavirus/química
7.
Asian Pac J Cancer Prev ; 23(1): 363-376, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092406

RESUMEN

OBJECTIVE: Globally, breast cancer represents serious cause of morbidity and mortality. Our goal is to improve nutraceuticals that have the ability to overlap the side effects of conventional therapies and promising tumoricidal effects by using nanotechnology techniques. The current work was premeditated to explore the apoptotic effects of punicalin (PN) and punicalagin (PNG) nano-prototypes, derived from Punica granatum, on human breast cancerous MCF7 and MDA-MB-231 cells in vitro. METHODS: Firstly, we prepared and characterized of PN, PGN, and 5-flurouracil (FU)-loaded PLGA, PLGA-coated-CS, and PLGA-coated-CS-PEG nano-prototypes. Then, we studied the toxicological and biochemical effects of all nanoformulations. Finally, we measured the genetic and protein expression levels of apoptotic and survival candidates in cancer cells. RESULTS: Our results showed that the newly synthesized nano-prototypes had cytotoxic and apoptotic effects on MCF7 and MDA-MB-231 cell lines. Moreover, they up-regulated Bax and Cas-3 expression levels, as well as down-regulated BCL-2, NF-ĸB and PI3k expression levels compared to control. Nitric oxide (NO) and zinc (Zn) levels were significantly elevated (P < 0.05) after the application of PN and PNG nano-prototypes compared to the control. CONCLUSION: PN and PNG nano-prototypes of PLGA decorated with CS and PEG enhanced the anti-cancer activity through induction of cytotoxicity, reactive oxygen species (ROS)-mediated apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Taninos Hidrolizables/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Especies Reactivas de Oxígeno
8.
Anticancer Agents Med Chem ; 22(4): 694-702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34315399

RESUMEN

Cancer is one of the major reasons for mortality across the globe. Many side-effects are associated with the formulations available in the market, affecting the quality of life of the patients. This has caused the researchers to find an alternative source of medications, such as herbal medicine, showing a promising effect in anticancer treatment; one such source is Pomegranate, which belongs to the family Punicaceae. Punica granatum contains many polyphenols that have antioxidant, antidiabetic, and therapeutic effects in the treatment and management of metabolic and cardiovascular diseases, as well as a favourable effect on anticancer therapy. Polyphenols like punicalin, punicalagin, and ellagic acid are a few of the many compounds responsible for the anticancer activity of pomegranate. Many preparations of pomegranate, such as Pomegranate Juice (PJ), Pomegranate Seed Oil (PSO), Pomegranate peel extract (PoPx), etc. are used in various clinical studies. These polyphenols show anticancer activity by either arresting the cell cycle in the G2/M phase, inducing apoptosis or damaging the DNA of tumor cells. This review explicitly discusses the role and mechanism of bioactives obtained from the pomegranate in the treatment and management of cancer. The chemical structure, properties, and role of pomegranate in the treatment of breast, lung, thyroid, colon, and prostate cancer have been focused on in detail. This review also discusses various targeted drug delivery approaches for tumour treatment as well as patented preparation of pomegranate compounds along with the ongoing clinical trials.


Asunto(s)
Lythraceae , Neoplasias , Granada (Fruta) , Humanos , Lythraceae/química , Masculino , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles , Calidad de Vida
9.
Acta Endocrinol (Buchar) ; 17(2): 157-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925563

RESUMEN

BACKGROUND: Pomegranate is a rich source of many polyphenolic compounds including ellagitannins (punicalagin, punicalin and others). AIM: The effects of punicalagin and punicalin on adipogenesis were investigated in this study. MATERIALS AND METHODS: To examine the effect of punicalagin and punicalin on adipocyte differentiation, various concentrations of punicalagin and punicalin (2-10 µM) were applied to differentiated 3T3-L1 cells. Glyceraldehyde-3-phosphate dehydrogenase (GPDH) activity, Oil red O staining, intracellular triglyceride levels, and gene expressions of transcription factors (Peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT-enhancer-binding proteins-α (C/EBPα), Sterol regulatory element-binding protein 1c (SREBP-1c)) and lipolysis-associated genes (hormone-sensitive lipase (HSL), Perilipin A, tumor necrosis factor-α (TNF-α)) were examined in order to investigate the effects of punicalagin and punicalin on adipocyte differentiation. RESULTS: Punicalagin and punicalin applications caused a continuous decrease in cell size and intracellular triglyceride accumulation. GPDH activity and transcription gene expressions decreased significantly in groups that were applicated punicalagin and punicalin at high concentrations. Punicalagin, but not punicalin, down-regulated the expression of HSL and perilipin A and up-regulated the expression of TNF-α in a dose-dependent manner. In conclusion, both punicalagin and punicalin were able to inhibit the adipocyte differentiation.

10.
Front Pharmacol ; 12: 789552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867423

RESUMEN

Background: Breast cancer bone metastasis and osteoporosis are both severe diseases that seriously threaten human health. These diseases are closely associated with osteolytic lesions. And osteoclasts are the key targets of this pathological process. Given the lack of effective preventive or treatment options against these diseases, the exploitation of new pharmacological agents is critically required. Method: We assessed the efficacy of punicalin on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation, F-actin ring formation, gene expression, bone resorption, nuclear factor-κB (NF-κB) as well as on mitogen-activated protein kinase (MAPK) signaling pathways and molecular docking in vitro. The impact of punicalin on breast cancer-induced osteoclastogenesis, breast cancer cell proliferation, and apoptosis were examined. Transwell assays were also performed. Moreover, we evaluated in vivo effects of punicalin in postmenopausal osteoporosis models and breast cancer bone metastasis model by micro-CT scanning and histomorphometry. Results: Punicalin inhibited osteoclast formation, F-actin ring formation, bone resorption, as well as osteoclast-related gene expression by suppressing the NF-κB signaling pathway. In vitro, punicalin also suppressed the breast cancer-induced osteoclastogenesis, and proliferation, migration as well as invasion of MDA-MB-231 cells and dose-dependently promoted their apoptosis. In vivo, punicalin significantly suppressed breast cancer-induced osteolysis, breast cancer-associated bone metastasis, and ovariectomized (OVX)-mediated osteoporosis by repressing osteoclast and breast cancer cell. Conclusion: Punicalin is expected to offer a novel treatment for the prevention of osteolysis diseases, including osteoporosis and breast cancer-associated osteolysis.

11.
Bioorg Chem ; 114: 105145, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246969

RESUMEN

The novel coronavirus disease (Covid-19) has become a major health threat globally. The interaction of SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) with ACE2 receptor on host cells was recognized as the first step of virus infection and therefore as one of the primary targets for novel therapeutics. Pomegranate extracts are rich sources of bioactive polyphenols that were already recognized for their beneficial health effects. In this study, both in silico and in vitro methods were employed for evaluation of pomegranate peel extract (PoPEx), their major polyphenols, as well as their major metabolite urolithin A, to attenuate the contact of S-glycoprotein RBD and ACE2. Our results showed that PoPEx, punicalin, punicalagin and urolithin A exerted significant potential to block the S-glycoprotein-ACE2 contact. These in vitro results strongly confirm the in silico predictions and provide a valuable insight in the potential of pomegranate polyphenols for application in SARS-CoV-2 infection.


Asunto(s)
Mezclas Complejas/farmacología , Polifenoles/farmacología , Granada (Fruta)/química , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Cromatografía Líquida de Alta Presión , Mezclas Complejas/química , Frutas/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
J Food Biochem ; : e13755, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33974280

RESUMEN

Forkhead box O3 (FOXO3) transcription factor is involved in chondral homeostasis of normal, aging and osteoarthritis (OA) cartilage. At present, we aimed to investigate whether FOXO3 is a target of punicalin to prevent IL-1ß- and TNF-α-induced chondrocyte dysfunction in vitro and in vivo models. Cell and mouse models of chondrocyte dysfunction were established to determine the pharmacological value of hydrolyzable tannin, punicalin, which was extracted from the pomegranate. FOXO3 protein levels in the nucleus and cytoplasm were analysed using western blot. Safranine O staining was performed to evaluate the expansion of growth plate and chondrocyte differentiation in IL-1ß- and TNF-α-treated mice. In IL-1ß- and TNF-α-treated chondrocytes and mice, IL-1ß and TNF-α evoked phosphorylation and nucleocytoplasmic shuttling of FOXO3, as well as reduced FOXO3 expression levels in the nucleus. However, punicalin treatment repressed FOXO3 phosphorylation and cytoplasmic transfer. Punicalin treatment improved IL-1ß and TNF-α-induced growth inhibition and apoptosis of chondrocyte and the abnormal expansion of growth plate and hypertrophic zone. Moreover, punicalin could maintain the normal phenotype of chondrocyte via mediating multiple gene expression. Punicalin showed a beneficial effect on IL-1ß- and TNF-α-stimulated chondrocytes and cartilaginous metabolic disorders via preserving the transcriptional activity of FOXO3. PRACTICAL APPLICATIONS: Our study presents a prospective adjuvant therapeutic drug, punicalin, to prevent inflammation-related cartilage injury and chondrocyte dysfunction.

13.
J Inflamm Res ; 14: 711-718, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707964

RESUMEN

PURPOSE: Inflammation is the driving force of many inflammatory and autoimmune diseases, Pyroptosis is a process of cell death in response to excessive inflammation. Punicalin has been reported to have anti-inflammatory effects. However, the anti-pyroptosis is unknown. Hence, this study was aimed to research the inhibition of MG on LPS/ATP-induced pyroptosis in vitro. METHODS: Lipopolysaccharide (LPS)/ATP were used to simulate mouse J774A.1 cells to mimic the inflammatory response and the role of punicalin was examined. The secretion of proinflammatory cytokines was analyzed using enzyme-linked immunosorbent assay (ELISA). The expression of nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1, and GSDMD-N in LPS/ATP-stimulated cells were examined by Western blot. N-acetylcysteine (NAC) was used to validate the role of Punicalin. RESULTS: Punicalin significantly blocked the production of endogenous ROS, reduced LPS/ATP-induced activation of NLRP3, caspase 1, ASC and GSDMD-N, IL-1b and IL-18 protein levels. Furthermore, N-acetylcysteine (NAC), an ROS scavenger, inhibited the LPS/ATP-stimulated activation of NLRP3 inflammasome mediated inflammation and pyroptosis. CONCLUSION: Punicalin ameliorates LPS/ATP-induced pyroptosis in J774A.1 macrophages, the mechanism may involve downregulation of the ROS/NLRP3 inflammasome signaling pathway.

14.
Mol Cell Biochem ; 476(2): 1179-1193, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33200379

RESUMEN

The search for effective coronavirus disease (COVID-19) therapy has attracted a great deal of scientific interest due to its unprecedented health care system overload worldwide. We have carried out a study to investigate the in silico effects of the most abundant pomegranate peel extract constituents on the multi-step process of serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) internalization in the host cells. Binding affinities and interactions of ellagic acid, gallic acid, punicalagin and punicalin were studied on four selected protein targets with a significant and confirmed role in the process of the entry of virus into a host cell. The protein targets used in this study were: SARS-CoV-2 spike glycoprotein, angiotensin-converting enzyme 2, furin and transmembrane serine protease 2. The results showed that the constituents of pomegranate peel extracts, namely punicalagin and punicalin had very promising potential for significant interactions with the selected protein targets and were therefore deemed good candidates for further in vitro and in vivo evaluation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Extractos Vegetales/química , Polifenoles/química , Granada (Fruta)/química , COVID-19/virología , Biología Computacional , Humanos , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus/efectos de los fármacos
15.
Plant Foods Hum Nutr ; 75(4): 553-560, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32816146

RESUMEN

Two environmentally friendly innovative extraction techniques - subcritical water (SWE) and microwave-assisted extraction (MAE) were applied for the extraction of phenolics from pomegranate peel. The impact of process conditions (SWE: temperature 100-220 °C, extraction time 5-30 min; MAE: solvent water and 50% ethanol, irradiation power 470 and 800 W) on the quality of extracts in terms of the content of total phenolics, total flavonoids, major phenolic constituents (gallic acid, ellagic acid, punicalin, punicalagin), as well as 5-hydroxymethylfurfural(HMF) amount was investigated. For SWE, temperature of 130 °C and 20 min extraction time were found optimal for obtaining high content of bioactive compounds and minimizing the yield of HMF. During MAE, phenolic compounds were effectively extracted by using lower microwave power and 50% ethanol. Comparing two techniques, MAE is more efficient than SWE for the extraction of phenolics from pomegranate peel while obtaining a HMF-free extracts.


Asunto(s)
Microondas , Agua , Furaldehído/análogos & derivados , Extractos Vegetales , Granada (Fruta)
16.
Vopr Pitan ; 88(5): 80-92, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31710791

RESUMEN

Pomegranate juice is one of the main products of pomegranate processing with high content of a complex of polyphenolic compounds. It possesses high antioxidant activity. The aim of the study is to establish the nutritional profile of pomegranate juice. Material and methods. A research of nutrient composition of commercial pomegranate juice and analysis of the results in conjunction with the data of chemical composition present in reference books and scientific publications have been carried out. Results and discussion. The nutrient profile of pomegranate juice has been defined. The nutrient profile shows the content of more than 30 nutrients and biologically active substances. Sugars of pomegranate juice are represented by glucose and fructose in approximately equal concentrations. Citric and L-malic acids prevail of the organic acids in pomegranate juice while the content of citric acid, as a rule, is several times higher than the content of L-malic. The total acidity of pomegranate juice is high, on average 1.1 g of organic acids is present in 100 cm3 of juice. A portion of pomegranate juice of industrial production on average contains 15% of the recommended daily allowance of potassium, 5% of magnesium, about 10% of copper. Pomegranate juice is rich in polyphenolic compounds - flavonoids and phenolic acids, as well as tannins, which are mainly represented by ellagotannins. The content of anthocyanins in pomegranate juice of industrial production on averages is 1 mg/100 cm3 (the majority is cyanidin-3,5-O-diglucoside - about 40% of the total content of anthocyanins), ellagic acid - on average 4 mg/100 cm3. The total concentration ellagotannins ( mostly punicalin and punicalagin ) is on average 40 mg/100 cm3. Conclusion. Polyphenolic compounds (ellagotanins, anthocyanins, ellagic acid) and minerals - potassium, magnesium, copper are the most significant for pomegranate juice from the point of view of providing human body with micronutrients and minor biologically active substances.


Asunto(s)
Flavonoides/análisis , Jugos de Frutas y Vegetales/análisis , Frutas/química , Taninos Hidrolizables/análisis , Minerales/análisis , Granada (Fruta)/química , Humanos
17.
Food Chem ; 237: 1139-1148, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28763961

RESUMEN

In this work, impact of extraction methods (maceration, decoction, MAE, and UAE) on TPC, antioxidant activity, and the mass fraction of phenolics in several plant extracts (Punica granatum, Juglans regia, Moringa oleifera, and Cassia fistula) was investigated. The results showed that, despite the nature of matrix, the highest values of TPC in all samples were obtained by MAE as follows: PP (18.92±0.11), ML (15.19±0.11), HL (12.69±0.16), and WS (12.80±0.11) mg GAEg-1 respectively, and exhibited potent antioxidant activity (from 0.28±0.01 to 5.34±0.02mgGAEg-1), representing sources of powerful antioxidants. The LC-MS2 analysis revealed a wide range of phenolics, highlighting their content in phenolic acids, flavonoids and lignans. The presence of different phenol molecules demonstrated that the extraction method had influence on phytochemical profile. Finally, due to its high extraction efficiency, MAE was the more effective extraction technique.


Asunto(s)
Antioxidantes/metabolismo , Fitoquímicos/análisis , Extractos Vegetales/química , Polifenoles/química , Flavonoides , Fenoles , Extractos Vegetales/análisis
18.
Phytochem Anal ; 28(5): 433-438, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28543801

RESUMEN

INTRODUCTION: Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. OBJECTIVE: To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. MATERIALS AND METHODS: The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. RESULTS: Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC50 of 109.53 and 151.50 µg/mL for DPPH and ABTS radicals, respectively. CONCLUSION: The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Ácido Elágico/aislamiento & purificación , Taninos Hidrolizables/aislamiento & purificación , Lythraceae/química , Polifenoles/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
19.
China Pharmacist ; (12): 720-724, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-512611

RESUMEN

Punicalin is an important ellagic tannin in Pericarpium Granati with the pharmacological effects such as antioxidation,anti-bacteria,antivirus and anti-inflammation.The studies on Pericarpium Granati at home and abroad were reviewed in the paper,and the extraction,separation,content determination,pharmacological activities and metabolism of punicalin were also summarized to provide theoretical basis for the development and application of punicalin.

20.
J Sep Sci ; 39(10): 1963-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27027975

RESUMEN

The combination of molecular crowding and virtual imprinting was employed to develop a cost-effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin-imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid-phase extraction with the recovery of 85.3 ± 1.2%.


Asunto(s)
Taninos Hidrolizables/aislamiento & purificación , Lythraceae/química , Impresión Molecular/economía , Extractos Vegetales/aislamiento & purificación , Taninos Hidrolizables/química , Taninos Hidrolizables/economía , Sustancias Macromoleculares/química , Sustancias Macromoleculares/economía , Extractos Vegetales/química , Extractos Vegetales/economía , Polímeros/química , Polímeros/economía , Extracción en Fase Sólida/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA