Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Water Res ; 267: 122544, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39383645

RESUMEN

Remote sensing water quality monitoring technology can effectively supplement the shortcomings of traditional water quality monitoring methods in spatiotemporal dynamic monitoring capabilities. At present, although the spectral feature-based remote sensing water quality inversion models have achieved many successes, there could still be a problem of insufficient generalization ability in monitoring the water quality of complex river networks in large cities. In this paper, we propose a spectro-environmental factors integrated ensemble learning model for urban river network water quality inversion. We analyzed the correlation between water quality parameters, spectral reflectance, and environmental factors based on an in-situ dataset collected in the northern part of Shanghai. Using the Hot Spot Analysis (Getis-Ord Gi*), we found that river network water quality parameters have different patterns in different urban functional zones. Furthermore, daily average temperature, total rainfall within the seven days, and several band combinations were also selected as the environmental and spectral features using factor analysis and Pearson correlation coefficient analysis. After the feature analysis, the spectro-environmental factors integrated ensemble learning model was trained. Compared with the spectral-based machine learning inversion models, the coefficients of determination R2 increased by about 0.50. Our model was also tested in three different test areas within and outside the in-situ sampling areas in Shanghai based on low-altitude multispectral remote sensing images. The R2 results for total phosphorus (TP), ammonia nitrogen (NH3-N), and chemical oxygen demand (COD) within the in-situ sampling areas were 0.52, 0.58, and 0.56 respectively. The mean absolute percentage error (MAPE) results were 53.36%, 63.95%, and 22.46% respectively. After adding the area outside the in-situ sampling areas, the R2 results for TP, NH3-N, and COD were 0.47, 0.47, and 0.53. The MAPE were 49.38%, 74.46%, and 20.49%. Our research provided a new remote sensing water quality inversion method to be utilized in complex urban river networks which exhibited solid accuracy and generalization ability.

2.
Mar Pollut Bull ; 208: 117043, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39353370

RESUMEN

Upwelling promotes marine productivity through water column mixing. The process disturbs the ecosystem, causing oxygen depletion and thermal variability. This study analyses effect of upwelling processes on microbial signature in coastal waters off Mumbai. The coastal environment with seasonal reversal winds was analysed using data during ten cruises. Coastal metocean processes are examined using water quality parameters and the Ekman approximation with wind stress. This analysis explains oxygen depletion and coastal upwelling, influenced by seasonal reversal wind pattern. The study connects hypoxia in the coastal water column to wind-induced upwelling. Concurrently, microbial structure is assessed through metrics such as Total Viable Count, Total Bacterial Count, Sulfate Reducing Bacteria (SRB), and denitrifiers. Notably, high levels of SRB are observed during hypoxia associated with coastal upwelling. This study investigates microbial level with combined result of physical processes and water quality parameters.

3.
Front Nutr ; 11: 1456319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364159

RESUMEN

Introduction: Mayonnaise, mustard, and ketchup are table sauces enjoyed worldwide, adding flavour and texture to many dishes. However, these products often contain high sodium content, which contributes to health issues such as high blood pressure and cardiovascular disease. To address these concerns, reducing salt content in the sauces has become a significant goal for both manufacturers and consumers. Objectives: This study investigates the effects of three formulations of microencapsulated (ME) oleoresins (F1, F2, and F3), derived from aromatic plants and spices, on the mineral content, physical-chemical properties, colour, and sensory profiles of mayonnaise, mustard, and ketchup. Results: The addition of ME ingredients resulted in significant reductions in salt content across all sauces, with reductions up to 50% in mayonnaise, 45% in mustard, and 52% in ketchup, aligning with EU sodium guidelines and allowing for a "reduced Na/NaCl content" nutrition claim. Potassium levels in mustard and ketchup were sufficient to support health claims related to blood pressure maintenance, while chloride content was reduced in ME formulations, better aligning with dietary reference values. Physical-chemical analysis revealed that ME ingredients had minimal impact on parameters like pH, lipid oxidation, and viscosity, although significant differences were observed in specific areas, such as the consistency of ketchup and chloride content in mustard and ketchup. The use of inulin, as a carrier agent, helped maintain the sauces rheological properties. Mustard showed the most similarity to the control in terms of physical-chemical parameters. Colour analysis indicated minimal changes in mayonnaise, moderate changes in mustard, and significant differences in ketchup, particularly with the ME-F3 formulation, where the light-yellow ME ingredients had a pronounced effect on the darker sauce. Despite these differences, the sensory analysis demonstrated that the overall sensory profiles of the ME formulations were similar the like control for all sauces. Mayonnaise showed the closest resemblance, while mustard had slightly lower scores in flavour and saltiness. Ketchup followed the same trend as mayonnaise, with no significant sensory differences compared to the control. Conclusion: These findings suggest that ME ingredients can be effectively used in condiment reformulation to achieve significant salt reduction without compromising sensory qualities, while also supporting health-related claims. By incorporating ME-based salt reduction strategies and exploring low-sodium alternatives, consumers can continue to enjoy their favourite sauces while minimising sodium intake. Embracing these changes not only benefits personal health but also aligns with the industry's commitment to offering more nutritious options.

4.
Animals (Basel) ; 14(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39272340

RESUMEN

Aquaponics combines aquaculture and hydroponics to offer a sustainable approach to agriculture, addressing food security issues with minimal environmental harm. However, small-scale practitioners face challenges due to a lack of professional knowledge in water chemistry and system maintenance. Economic hurdles, such as operational costs and energy-intensive components, hinder the viability of small-scale aquaponics. Selecting suitable fish and plant species, along with appropriate stocking densities, is crucial. Media Bed (MB), Deep Water Culture (DWC), and the Nutrient Film Technique (NFT) are commonly used hydroponic techniques. This study outlines optimal conditions, including water quality, temperature, pH, and nutrient concentrations, essential for symbiotic fish and plant cultivation. Integrating IoT technology enhances efficiency and profitability by optimizing resource utilization, monitoring water quality, and ensuring optimal growth conditions. Knowledge sharing among practitioners fosters innovation and sustainability through collaborative learning and best practices exchange. Establishing a community for knowledge sharing is vital for continuous improvement, advancing small-scale aquaponics towards a more efficient and sustainable future.

5.
Heliyon ; 10(17): e36945, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286074

RESUMEN

Diesel adulteration not only reduces engine performance and lifespan but also has a stiffening effect on the economy. Therefore, regulatory agencies and petroleum laboratories are constantly adopting various methods to ensure that commercial diesel is pure and of good quality. Despite the introduction of solvent tracer analysis as a reliable means of detecting adulteration, most laboratories still depend on the physicochemical parameters of diesel as an indicator of adulteration. This research aimed to document the feasibility of using quality parameters to detect diesel adulteration. Neat diesel samples were mixed with some common adulterants (kerosene, premix, and condensate) at varying concentrations. The quality of each admixture was analysed using the ERASPEC fuel analyser and physicochemical parameters including density, kinematic viscosity, cetane index, and flashpoint were recorded. A negative correlation was observed between adulteration and all quality parameters. At low levels of adulteration, physicochemical parameters were within the required range. However, diesel with adulterants above 20 % v/v had cetane index, density, and flashpoint values not conforming with quality standards. Kinematic viscosity of diesel remained within the required limits despite the levels of adulteration. Physicochemical parameters, though generally accepted as good indicators of fuel quality, were not reliable indicators of diesel adulteration, especially at low levels. At higher levels of adulteration, the type of adulterant present must be considered if physicochemical parameters are to be used to predict adulteration. However, it is recommended that physicochemical parameters be used in combination with other techniques to detect diesel adulteration.

6.
Foods ; 13(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39335802

RESUMEN

Acerola fruit has great nutritional and economic relevance; however, its rapid degradation hinders commercialization. The use of coatings reduces post-harvest biochemical modifications and provides physical and biological protection for vegetables such as acerola. This study developed and characterized an edible coating made from pearl pineapple peel flour (PPPF) and yam starch (YS) to preserve the quality standards of acerola fruits during storage at room temperature and under refrigeration. The edible coating, composed of 4 g of PPPF, 3 g of starch, and 10% glycerol, presented excellent moisture content (11%), light tone (L* 83.68), and opacity (45%), resistance to traction of 27.77 Mpa, elastic modulus of 1.38 Mpa, and elongation percentage of 20%. The total phenolic content of the coating was 278.68 ± 0.45 mg GAE/g and the antioxidant activity by DPPH was 28.85 ± 0.27%. The quality parameters of acerolas were evaluated with three treatments: T1-uncoated fruits; T2-fruits coated with 1% glycerol; and T3-fruits coated with PPPF-YS. The T3 treatment reduced the weight loss of stored acerolas, maintaining the light and bright color of the fruits, and delayed the decrease in soluble solids, especially in refrigerated fruits. Therefore, edible coatings based on pineapple flour and yam starch are effective technologies for controlling the physical and physicochemical parameters of acerolas during storage, benefiting the post-harvest quality of this fruit.

7.
Mar Pollut Bull ; 207: 116887, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217873

RESUMEN

Estuaries provide critical ecosystem services, and yet are increasingly under threat from urbanization. Non-invasive approaches to monitor biodiversity resident to or migrating through estuaries is critical to evaluate the holistic health of these ecosystems, often based entirely on water quality. In this study we compared tree of life metabarcoding (ToL-metabarcoding) biodiversity detections with measurements of physico-chemical variables (chlorophyll a, turbidity, total nitrogen, total phosphorous, dissolved oxygen) at eight sites of varying degrees of water quality in the Gold Coast Broadwater Estuary (Queensland, Australia). These sites were ranked according to an adapted Water Quality Index (WQI) score. Here, we detected 787 unique taxa, adding 137 new biodiversity records to the region, mostly micro-organisms such as bacteria, ciliates, diatoms, dinoflagellates, and cryptomonads. Sites with the lowest WQI were characterised by higher turbidity, lower dissolved oxygen, as well as higher total nitrogen and phosphorous, which correlated with an increased diversity of bacteria, ciliates, and green algae. Similarly, the composition of taxa was significantly different between sites with variable WQI values for most taxa but was less apparent for larger vertebrate groups. These findings suggest that rapid ToL-metabarcoding biodiversity detections, particularly for lower order taxonomic groups, can serve as valuable indicators of flora and fauna across the tree of life associated with dynamically shifting estuarine health along urbanized coastlines.


Asunto(s)
Biodiversidad , ADN Ambiental , Monitoreo del Ambiente , Estuarios , Urbanización , Calidad del Agua , ADN Ambiental/análisis , Queensland , Código de Barras del ADN Taxonómico , Fósforo/análisis , Ecosistema , Nitrógeno/análisis
8.
Environ Monit Assess ; 196(10): 927, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266805

RESUMEN

Water contamination is a serious issue that has an impact on the whole globe. In the current work, adsorption technique was used to remove synthetic Reactive Blue MEBF 222 textile dye utilizing Cd-doped Co (Co1 - xCd1.5xFeO3), Zn-doped Co (Co1 - xZn1.5xFeO3), Cr-doped Co (Co1 - xCr1.5xFeO3), Zn-doped Ni (Ni1 - xZn1.5xFeO3), and Cr-doped Ni (Ni1 - xCr1.5xFeO3) perovskites, synthesized by sol-gel auto-combustion approach. According to the findings of batch adsorption studies, maximum adsorption was observed at pH 3 (45.62 mg/g), 0.01 g/50 ml dosage (36.67 mg/g), 60 min (14.31 mg/g), 100 ppm dye concentration (47.41 mg/g), and 308 K (35.96 mg/g) for Co1 - xCd1.5xFeO3; at 3 pH (42.94 mg/g), 0.01 g/50 ml dosage (35.33 mg/g), 60 min (12.88 mg/g), 100 ppm dye concentration (40.52 mg/g), and 308 K (31.31 mg/g) for Co1 - xZn1.5xFeO3; at 2 pH (38.82 mg/g), 0.01 g/50 ml dosage (32.20 mg/g), 60 min (11.98 mg/g), 100 ppm dye concentration (33.54 mg/g), and 308 K (29.34 mg/g) for Co1 - xCr1.5xFeO3; at 2 pH (34.97 mg/g), 0.01 g/50 ml dosage (30.41 mg/g), 60 min (10.46 mg/g), 100 ppm dye concentration (27.19 mg/g), and 308 K (26.12 mg/g) for Ni1 - xZn1.5xFeO3; and at 2 pH (31.22 mg/g), 0.01 g/50 ml dosage (25.04 mg/g), 60 min (9.48 mg/g), 100 ppm dye concentration (21.73 mg/g), and 308 K (23.61 mg/g) for Ni1 - xCr1.5xFeO3. The pseudo-second-order model showed good fitness for adsorption kinetic data. Electrolytes, detergents/surfactants, and heavy metal ions had a substantial impact on the adsorption potential. The column adsorption experiments demonstrated optimal bed height, flow rate, and intake dye concentration to be 3 cm, 1.8 ml/min, and 70 mg/l, respectively, in the column experiment. With an adsorption capacity of 44.1 mg/g, reactive blue (RB) 222 dye was able to achieve its maximum adsorption. Detailed desorption of RB 222 dye was also achieved. The novelty of this adsorption method lies in its eco-friendliness, ease of handling, and cost-effectiveness.


Asunto(s)
Cobalto , Colorantes , Níquel , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Colorantes/química , Adsorción , Níquel/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Cobalto/química , Óxidos/química , Compuestos de Calcio/química , Textiles , Titanio
9.
Front Nutr ; 11: 1446485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296503

RESUMEN

Fish protein hydrolysates (FPH) obtained by enzymatic hydrolysis allows for smart valorization of fish side streams. However, further treatments are normally needed to enhance bioactive and functional properties of the obtained FPH. At present, the commonly used methods to improve functional properties of FPH include chemical and enzymatic modification. Chemical treatments often cause environmental problems, while the enzymatic modification method requires the use of quite expensive enzymes. In recent years, emerging technologies such as ultrasound treatment (US-treatment) have shown great potential in protein modification with high efficiency and safety, low energy consumption, and low nutritional destructiveness. In this study, high-power ultrasound treatments were applied to fish protein hydrolysates (FPH) extracted from Atlantic mackerel (Scomber scombrus) side streams to improve their quality parameters. The effect of three different treatments of 300 W, 450 W and 600 W at the operating frequency of 20 kHz for 10 min on the physicochemical, structural, and functional characteristics of FPH, were examined. The results have shown that with an increase in ultrasound power, the protein solubility of FPH increased linearly, and the changes were significant for all US-treated samples compared to control (untreated) samples. US-treatment significantly increased the degree of hydrolysis of FPH samples treated with 450 W and 600 W compared to control samples. The carbonyl content of FPH increased (significantly for 450 W and 600 W), while thiol groups decreased (significantly for 300 W and 450 W). This indicated that some US-treatments induced oxidation of FPH, however the values of the protein oxidation were low. Amino acid composition of FPH revealed that US-treatment increased the proportion of essential amino acids in the sample treated with 300 W and 450 W, but the increase was not significant. After the US-treatment, all FPH samples became lighter and less yellowish and reddish, which suggest potentially higher attractiveness to consumers. In addition, the in vitro antioxidant activity was assessed using the DPPH, FRAP, and ABTS assays and the cell-free dipeptidyl peptidase IV (DPP-IV) inhibitory activity was also measured. Moreover, these biological activities were measured at cellular level utilizing human intestinal Caco-2 cells. Specifically, the FPH capacity to lower H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels was used to measure its antioxidant activity. The findings suggest that Scomber scombrus hydrolysates could find use as ingredients for promoting health.

10.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39124992

RESUMEN

This work aimed to evaluate the impact of enrichment processing on the quality parameters, bioactivity and sensorial aspects of Myristica fragrans (mace)-flavored olive oil storage for one year. The mace powder was added to extra virgin olive oil through two different processes: immediately after crushing the olives by mixing mace (1% weight/weight (w/w)) with the olive paste (MAVOO-M) and by adding mace to extra virgin olive oil (C) (2% w/w) (MAVOO-I). A multi-analytical approach was applied to measure the main qualitative indexes, such as the free acidity, peroxide value and ultraviolet parameters. The total phenolic and carotenoid contents (TPC and TCC, respectively) and α-tocopherol were also evaluated, as well as the sensory attributes. The radical scavenging potential was estimated by using two different in vitro tests, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). A significant increase in the free acidity parameter was found in all the flavored oils, and particularly in the MAVOO-M (1.27% oleic acid); at the same time, this oil was the sample with the lowest peroxide value (i.e., 9.68 meqO2/kg) after 360 days of storage. At the end of the storage, an increase in L* values was found in both the MAVOO-M and -I vs. the C (43.88 and 43.02, respectively, vs. 42.62). The TCC was strongly influenced by the addition of mace, especially when the infusion process was used. In fact, after one year of storage, the TCC in the MAVOO-I resulted in ~34.7% more than the MAVOO-M. A promising DPPH radical scavenging activity was observed independently by the applied aromatization process, with IC50 values of 19.77 and 17.80 µg/mL for the MAVOO-M and MAVOO-I, respectively. However, this activity decreased during storage, and a similar trend was observed using the ABTS test. In conclusion the infusion as enrichment methodology led to more promising results in terms of functionality compared with the co-mixing one.


Asunto(s)
Myristica , Myristica/química , Antioxidantes/química , Antioxidantes/farmacología , Polvos/química , Fenoles/química , Aceite de Oliva/química , Aromatizantes/química , Almacenamiento de Alimentos/métodos , Carotenoides/química
11.
Water Sci Technol ; 90(1): 103-123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007309

RESUMEN

Drug resistance has become a matter of great concern, with many bacteria now resist multiple antibiotics. This study depicts the occurrence of antibiotic-resistant bacteria (ARB) and resistance patterns in five full-scale hospital wastewater treatment plants (WWTPs). Samples of raw influent wastewater, as well as pre- and post-disinfected effluents, were monitored for targeted ARB and resistance genes in September 2022 and February 2023. Shifts in resistance profiles of Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii antimicrobial-resistant indicators in the treated effluent compared to that in the raw wastewater were also worked out. Ceftazidime (6.78 × 105 CFU/mL) and cefotaxime (6.14 × 105 CFU/mL) resistant species showed the highest concentrations followed by ciprofloxacin (6.29 × 104 CFU/mL), and gentamicin (4.88 × 104 CFU/mL), in raw influent respectively. WWTP-D employing a combination of biological treatment and coagulation/clarification for wastewater decontamination showed promising results for reducing ARB emissions from wastewater. Relationships between treated effluent quality parameters and ARB loadings showed that high BOD5 and nitrate levels were possibly contributing to the persistence and/or selection of ARBs in WWTPs. Furthermore, antimicrobial susceptibility tests of targeted species revealed dynamic shifts in resistance profiles through treatment processes, highlighting the potential for ARB and ARGs in hospital wastewater to persist or amplify during treatment.


Asunto(s)
Antibacterianos , Hospitales , Aguas Residuales , Aguas Residuales/microbiología , Antibacterianos/farmacología , Eliminación de Residuos Líquidos/métodos , Farmacorresistencia Bacteriana , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pruebas de Sensibilidad Microbiana
12.
Foods ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39063301

RESUMEN

The sous-vide (SV) technique, notable for its precision and ability to preserve food quality, has become a transformative method in culinary arts. This review examines the technical aspects, applications, and limitations of SV, focusing on its impact on food safety, nutritional retention, and quality parameters across various food matrices such as meats, seafood, vegetables, and semi-prepared products. Through an extensive literature review, the study highlights the use of natural inhibitors and essential oils to enhance microbial safety and explores the nutritional benefits of SV in preserving vitamins and minerals. The findings suggest that while SV offers significant benefits in terms of consistent results and extended shelf life, challenges remain in terms of equipment costs and the necessity for specific training, and although sufficient for food preparation/processing, its effectiveness in eliminating microbial pathogens, including viruses, parasites, and vegetative and spore forms of bacteria, is limited. Overall, the research underscores SV's adaptability and potential for culinary innovation, aligning with modern demands for food safety, quality, and nutritional integrity.

13.
Vet Med Sci ; 10(4): e1538, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985126

RESUMEN

BACKGROUND: Selenium (Se) is a rare essential element that plays a vital role in the health and performance of animals. By interfering in the production of antioxidant enzymes such as glutathione peroxidase, thioredoxin reductase and methionine sulfoxide, Se plays a role in reducing the effects of oxidative stress and animal performance. OBJECTIVES: This study aimed to investigate the effect of hydroxy-selenomethionine (OH-SeMet) in the diet of broiler breeder and old broiler breeder roosters on productive performance, reproduction and sperm quality parameters. METHODS: For this purpose, 260 broiler breeders of the Ross 308 strain were used in a completely randomized design with four treatments and five replications (13 hens and one rooster in each replication). Experimental treatments included: (1) a basal diet without OH-SeMet (T1:control), (2) a broiler breeder diet without OH-SeMet and a rooster diet containing 0.1 mg/kg OH-SeMet (T2), (3) broiler breeder diet containing 0.1 mg/kg OH-SeMet and rooster diet without OH-SeMet (T3) and (4) broiler breeder and rooster diet contained 0.1 mg/kg OH-SeMet (T4). RESULTS: The results showed that T3 and T4 treatments improved egg production, egg weight, egg mass and feed conversion ratio (FCR) compared to the control treatment (p < 0.05). The fertility and hatchability percentages of T4 and T2 treatments increased compared to T1 and T3 treatments (p < 0.05). The rate of embryonic losses in T1 was higher than in other treatments. However, grade one chickens were higher in T4 than in other treatments (p < 0.05). Total motility and viability of sperms were significantly higher in T2 and T4 treatments than in T1 and T3 treatments. The sperm abnormality percentage and sperm MDA concentration decreased in T2 and T4 treatments. CONCLUSIONS: Therefore, using OH-SeMet may be a practical approach to help old broiler breeders' production and reproduction performance.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Reproducción , Selenometionina , Animales , Pollos/fisiología , Selenometionina/farmacología , Selenometionina/administración & dosificación , Dieta/veterinaria , Masculino , Alimentación Animal/análisis , Femenino , Suplementos Dietéticos/análisis , Reproducción/efectos de los fármacos , Distribución Aleatoria , Butiratos , Compuestos de Selenio
14.
J Environ Manage ; 365: 121567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955047

RESUMEN

Effective monitoring of river water quality is required for long-term water resource management. Convolutional Neural Networks and Gated Recurrent Unit-based water quality monitoring (CNGRU-WQM) were used in this investigation to develop a comprehensive monitoring system along the Vaigai River. The system was designed to collect real-time data on several crucial water quality parameters. The collected characteristics encompassed factors like water pollution levels, turbidity, pH readings, temperature, and total dissolved solids, offering a comprehensive view of river water quality. The monitoring system was methodically set up, with sensors strategically positioned at various locations along the river. This ensured that data collection would take place at regular intervals. The CNGRU-WQM model achieved a validation accuracy of 97.86%, surpassing the performance of other state-of-the-art approaches. Particularly noteworthy is the fact that the actual use of this system incorporates real-time warnings, which enable stakeholders to be instantly informed if water quality measurements surpass pre-set criteria. The study's contributions include its efficient river water quality monitoring system, which encompasses a variety of indicators, and its ability to significantly affect environmental conservation efforts by offering a helpful tool for informed decision-making and timely interventions.


Asunto(s)
Monitoreo del Ambiente , Redes Neurales de la Computación , Ríos , Calidad del Agua , Ríos/química , Monitoreo del Ambiente/métodos
15.
Forensic Sci Int ; 361: 112100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865897

RESUMEN

The primary aim of fingermark research is to advance the quantity and quality of fingermarks detected using novel techniques or improvements on existing methods. Subsequently, there is a need to evaluate these methods to determine the quality of the developed mark, which is mostly done by the use of a numerical scale with descriptors to assist in the evaluation. However, this evaluation is often complicated due to a wide range of variables that impact the way quality assessment is performed. This is particularly true when considering it is currently unknown what assessment parameters are required to encompass the overall definition of quality. Likewise, the definition of fingermark quality is not universally agreed upon, which leads to significant subjective interpretation when a researcher chooses a scale. The purpose of this study was to investigate the factors contributing to fingermark quality in order to generate a deeper understanding of current approaches and definitions. A survey was created through a dataset that consisted of over 500 fingermarks detected in controlled laboratory conditions with a range of techniques. The images selected for the survey were based upon representing a full range of quality, each with a varying range of attributes. The survey looked at different parameters and descriptions used in current assessment protocols, asked participants to grade marks based on chosen parameters, and investigated current chosen methods by researchers in fingermark definition. The survey relied upon the participation of both examiners and researchers in fingermark detection. The results indicate that quality assessment methods implemented by researchers are not utilising all parameters that fingermark researchers and examiners deem important. This is especially true for contrast and background development, considered as two of the top parameters by examiners and researchers, which are not regularly used in most quality scale assessment methods. The survey ultimately demonstrated that the current subjective quality assessment methods were not always suitable and highlighted more appropriate parameters and descriptors that should be considered when assessing the quality of a fingermark.


Asunto(s)
Dermatoglifia , Humanos , Encuestas y Cuestionarios , Investigadores
16.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891264

RESUMEN

During ripening, 'Hass' avocado skin changes from green to purple/black. Low-temperature storage with a controlled atmosphere (CA) is the most widely used method for avocado storage; however, few studies have simulated this technology and considered the days of regular air (RA) storage prior to CA storage. Herein, the effect of delaying the storage of 'Hass' avocado (>30% dry matter) in a CA was examined. Long-term storage conditions (5 °C for 50 days) corresponded to (i) regular air storage (RA), (ii) CA (4 kPa O2 and 6 kPa CO2) and (iii) 10 days in RA + 40 days in a CA and (iv) 20 days in RA + 30 days in a CA. Evaluations were performed during storage and at the ready-to-eat (RTE) stage. Skin color remained unchanged during storage, but at the RTE stage, more color development was observed for fruits stored under CA conditions, as these fruits were purple/black (>50%). At the RTE stage, the anthocyanin content increased, and compared to fruit under RA, fruit under a CA contained a five-fold greater content. A 20-day delay between harvest and CA storage increased the fruit softening rate and skin color development after cold storage, reducing the effectiveness of CA as a postharvest technology for extending storage life.

17.
Sci Rep ; 14(1): 13803, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877060

RESUMEN

Topical consumer interest in natural, healthier, safer and nutritional juice, has inspired the search for innovative technologies that can minimize product degradation. In this regard, thermosonication has been proposed as a potential processing technology that can preserve and produce "fresh" products. Watermelon (Citrullus lanatus) juice is a nutrient-rich fruit juice that is desired by consumers due to its appealing color, pleasant odor, sweet taste and low-calorie content. This fruit juice is, however, highly perishable and prone to microorganisms, because of its neutral pH value and high amount of water activity. In addition, it is thermo-sensitive and therefore degrades quickly under thermal processing. This study aimed to identify the optimal thermosonication processing conditions for retaining the critical quality parameters (lycopene, ß-carotene, ascorbic acid and total polyphenolic content) of watermelon juice. Response surface methodology, employing a central composite design, was used to determine the effects of temperature (18-52 °C), processing time (2-13 min) and amplitude level (24-73 µm) at a constant frequency of 25 kHz. The highest quality parameters were obtained at 25 °C, 2 min, and 24 µm at a constant frequency of 25 kHz, which resulted in lycopene of 8.10 mg/100 g, ß-carotene of 0.19 mg/100 g, ascorbic acid of 3.11 mg/100 g and total polyphenolic content of 23.96 mg/GAE/g with a desirability of 0.81. The proposed model was adequate (p < 0.0001), with a satisfactory determination coefficient (R2) of less than 0.8 for all phytochemicals. Thermosonicated watermelon juice samples showed minimal changes in their phytochemical properties, when compared to fresh juices; the lycopene content showed a significant increase after thermosonication, and a significant retention of ß-carotene, ascorbic acid and total polyphenolic acid was observed. According to the findings, thermosonication could be a viable method for preserving watermelon juice, with minimal quality loss and improved functional attributes.


Asunto(s)
Citrullus , Jugos de Frutas y Vegetales , Citrullus/química , Jugos de Frutas y Vegetales/análisis , Licopeno/análisis , Ácido Ascórbico/análisis , Sonicación/métodos , Manipulación de Alimentos/métodos , Temperatura , Calor , Polifenoles/análisis
18.
Environ Res ; 257: 119254, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815715

RESUMEN

In recent years, increasing demand for inland river water quality precision management has heightened the necessity for real-time, rapid, and continuous monitoring of water conditions. By analyzing the optical properties of water bodies remotely, unmanned aerial vehicle (UAV) hyperspectral imaging technology can assess water quality without direct contact, presenting a novel method for monitoring river conditions. However, there are currently some challenges to this technology that limit the promotion application of this technology, such as underdeveloped sensor calibration, atmospheric correction algorithms, and limitations in modeling non-water color parameters. This article evaluates the advantages and disadvantages of traditional sensor calibration methods and considers factors like sensor aging and adverse weather conditions that impact calibration accuracy. It suggests that future improvements should target hardware enhancements, refining models, and mitigating external interferences to ensure precise spectral data acquisition. Furthermore, the article summarizes the limitations of various traditional atmospheric correction methods, such as complex computational requirements and the need for multiple atmospheric parameters. It discusses the evolving trends in this technology and proposes streamlining atmospheric correction processes by simplifying input parameters and establishing adaptable correction algorithms. Simplifying these processes could significantly enhance the accuracy and feasibility of atmospheric correction. To address issues with the transferability of water quality inversion models regarding non-water color parameters and varying hydrological conditions, the article recommends exploring the physical relationships between spectral irradiance, solar zenith angle, and interactions with water constituents. By understanding these relationships, more accurate and transferable inversion models can be developed, improving the overall effectiveness of water quality assessment. By leveraging the sensitivity and versatility of hyperspectral sensors and integrating interdisciplinary approaches, a comprehensive database for water quality assessment can be established. This database enables rapid, real-time monitoring of non-water color parameters which offers valuable insights for the precision management of inland river water quality.


Asunto(s)
Monitoreo del Ambiente , Ríos , Calidad del Agua , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Ríos/química , Dispositivos Aéreos No Tripulados , Imágenes Hiperespectrales/métodos , Tecnología de Sensores Remotos/métodos
19.
Water Res ; 257: 121673, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688189

RESUMEN

Wetlands cover only around 6 % of the Earth's land surface, and are recognized as one of the three major ecosystems, alongside forests and oceans. The ecological structure and function of karst wetlands are unique due to the influence of geologic structure. At present, the unclear spectral morphology of surface water in karst wetlands poses a significant challenge in remote sensing estimation of non-optically active water quality parameters (NAWQPs). This study proposed a novel multi-scale spectral morphology feature extraction (MSFE) method to insight to spectral characteristics in surface water of karst wetlands, and further screen the sensitive features of NAWQPs. Then we constructed three remote sensing inversion strategies for NAWQPs (TN, TP, NH3_N, DO), including direct estimation, indirect estimation, and auxiliary estimation. Finally, we constructed a novel pH-based hierarchical analysis framework (pH_HA) to thoroughly explore the influence of alkalinity-biased characteristics of karst water on the spectral domain of NAWQPs and its estimation accuracy using in-situ hyperspectral data, respectively. We found that the spectral characteristics of karst waters at the first reflectance peak (580 nm) differed significantly from other water body types. The MSFE successfully captured the sensitive spectral domains for NAWQPs, and focused on between 500 and 600 nm and 900-960 nm. The sensitive features captured by MSFE improved estimation accuracy of NAWQPs (R2 >0.9). Direct estimation presented more stable performance compared to the auxiliary estimation (average RMSE of 0.366 mg/L), and the auxiliary estimation model further improved the retrieval accuracy of TN compared to direct estimation model (R2 increasing from 0.43 to 0.56). The novel hierarchical framework clearly revealed the notable changes in the sensitive spectral domains of NAWQPs under different pH values, and enabled more precise determination of spectral subdomains of NAWQPs, and identified the optimal spectral features. The pH_HA framework effectively improved the estimation accuracy of NAWQPs (R2 increased from 0.514 to over 0.9), and the estimation accuracies (R2) of four NAWQPs were all more than 0.9 when the pH value was over 8.5. Our works provide an effective approach for monitoring water quality in karst wetlands.


Asunto(s)
Humedales , Monitoreo del Ambiente/métodos , Calidad del Agua , Tecnología de Sensores Remotos , Análisis Espectral/métodos , Agua/química
20.
Environ Res ; 252(Pt 2): 118887, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588910

RESUMEN

Groundwater is essential for maintaining ecosystem health and overall well-being as a pivotal resource for plants and animals. The increasing public consciousness of the deterioration of groundwater quality has emphasized the significance of undertaking extended evaluations of groundwater water quality, particularly in regions undergoing substantial hydrological alterations. This study primarily aims to investigate the spatio-temporal variations in groundwater quality and evaluate its suitability for potable purposes in the region of Madhya Pradesh. The study combines the Mann-Kendall (MK) test and Sen's Slope (SS) to analyze the changes in groundwater quality of all 51 districts of Madhya Pradesh, India, utilizing 12 water quality indices using MATLAB. Data was sourced from the Central Ground Water Board (CGWB) in India from the year 2001-2021. The data was then tested for homogeneity at all 1154 sampling stations using the software XLSTAT. Piper plot clustering characterized the state's groundwater as bicarbonate-calcium-magnesium (HCO3--Ca2+-Mg2+) type. The study found that the groundwater in the area is heavily impacted by high levels of nitrate and hardness, which is caused by an increase in multivalent cations. The water was classified as ranging from hard to extremely hard, and approximately 25.49% of the state's groundwater has nitrate levels that exceed the acceptable limits. The MK test showed a significant increasing correlation in trends for parameters such as nitrate, sulfate, fluoride, chloride, bicarbonate, total hardness, and electrical conductivity. It also showed a significant decreasing correlation for calcium, magnesium, potassium, and sodium. These results were observed at a confidence level of 95%. The analysis of trends has shown that human-related factors have a considerable effect on the characteristics of groundwater quality. It is therefore recommended that such human-related factors be taken into consideration when developing policies for managing groundwater resources. Consequently, these policies should emphasize the strict enforcement of rules and standards that limit the overuse of fertilizers, ensure the appropriate disposal of municipal solid and liquid wastes, and regulate industrial pollutants.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Agua Subterránea/análisis , India , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Nitratos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA