Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116810, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096692

RESUMEN

Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.

2.
Sci Rep ; 14(1): 18169, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107519

RESUMEN

Epistasis is one of important genetic components for a quantitative trait in plant. Eshed and Zamir found negative epistatic interactions of quantitative trait loci in Tomato first. We detected that positive (negative) QTLs generated mostly negative (positive) epistatic interactions on heading date in rice, and then proposed the hypothese that QTL epistasis plays a role of homeostasis in one of our recent papers. In order to further provide additional evidence, the effects of QTLs and their epistatic effects on two quantitative traits of plant height (ph) and thousand kernel weight (tkw) were analyzed in this study. The same regularity was verified again. We detected that positive ph QTLs and negative tkw QTLs always generated reverse epistatic effects, respectively. Moreover, high-order epistatic effects were estimated on these two traits. The sum of all epistatic effects would partially neutralize the additive of constitutive QTL effects. This feature of epistsis would be the mechanism for bionts to maintain homeostasis while the obstacle for human to achieve the pyramiding breeding objectives. More evidences are still being collected to support our assumption.


Asunto(s)
Epistasis Genética , Sitios de Carácter Cuantitativo , Oryza/genética , Fenotipo , Modelos Genéticos
3.
Plants (Basel) ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124138

RESUMEN

Soybean, a primary vegetable protein source, boasts favorable amino acid profiles; however, its composition still falls short of meeting human nutritional demands. The soybean amino acid content is a quantitative trait controlled by multiple genes. In this study, an F2 population of 186 individual plants derived from the cross between ChangJiangChun2 and JiYu166 served as the mapping population. Based on the previously published genetic map of our lab, we increased the density of the genetic map and constructed a new genetic map containing 518 SSR (simple sequence repeats) markers and 64 InDel (insertion-deletion) markers, with an average distance of 5.27 cm and a total length of 2881.2 cm. The content of eight essential amino acids was evaluated in the F2:5, F2:6, and BLUP (best linear unbiased prediction). A total of 52 QTLs (quantitative trait loci) were identified, and 13 QTL clusters were identified, among which loci02.1 and loci11.1 emerged as stable QTL clusters, exploring candidate genes within these regions. Through GO enrichment and gene annotation, 16 candidate genes associated with soybean essential amino acid content were predicted. This study would lay the foundation for elucidating the regulatory mechanisms of essential amino acid content and contribute to germplasm innovation in soybeans.

4.
Plants (Basel) ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124172

RESUMEN

Grain size is a primary determinant of grain weight, which is one of the three essential components of rice grain yield. Mining the genes that control grain size plays an important role in analyzing the regulation mechanism of grain size and improving grain appearance quality. In this study, two closely linked quantitative trait loci (QTL) controlling grain size, were dissected and fine-mapped in a 515.6-kb region on the long arm of chromosome 10 by using six near isogenic line populations. One of them, qGS10.2, which controlled 1000 grain weight (TGW) and grain width (GW), was delimited into a 68.1-kb region containing 14 annotated genes. The Teqing allele increased TGW and GW by 0.17 g and 0.011 mm with the R2 of 12.7% and 11.8%, respectively. The other one, qGL10.2, which controlled grain length (GL), was delimited into a 137.3-kb region containing 22 annotated genes. The IRBB52 allele increased GL by 0.018 mm with the R2 of 6.8%. Identification of these two QTL provides candidate regions for cloning of grain size genes.

5.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115051

RESUMEN

BACKGROUND AND AIMS: Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system to examine the genetic basis of this phenotype, and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. This study sought to map the loci controlling the white leaf mark in white clover and evaluate the relationship between white leaf mark, leaf thickness, and photosynthetic efficiency. METHODS: We generated a high-density genetic linkage map from an F3 mapping population, employing reference genome-based SNP markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness may affect the variegation phenotype. Quantitative trait locus (QTL) mapping was performed to characterize their genetic bases. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS: The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to variegation intensity. The presence and intensity of white leaf mark was associated with greater leaf thickness; however, increased variegation did not detectably affect photosynthetic efficiency. CONCLUSIONS: We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors may maintain the white leaf mark polymorphism in white clover.

6.
J Agric Food Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052860

RESUMEN

This study evaluated alkylresorcinol concentration (ARC) in recombinant inbred lines (RILs) from the cross of Zhongmai 578 and Jimai 22 in three environments. ARC exhibited a continuous distribution ranging from 337.4 to 758.0, 495.4-768.0, and 456.3-764.7 µg/g, respectively, in three environments. Analysis of variance (ANOVA) indicated significant (P < 0.001) impacts of genotypes, environments, and their interactions. The broad-sense heritability of ARC was 0.76. Genome-wide linkage mapping analysis identified four stable quantitative trait loci (QTL) for ARC on chromosomes 2A, 3A, 4D, and 7A. Kompetitive allele-specific PCR (KASP) marker of each QTL was developed and validated in 206 representative wheat varieties. Wheat varieties harboring 0, 1, 2, 3, and 4 favorable alleles had ARC of 499.1, 587.8, 644.7, 668.5, and 711.1 µg/g, respectively. This study suggests that combining multiple minor-effect QTL through KASP markers can serve as an effective strategy for breeding high-ARC wheat, thereby enhancing innovations in functional food production.

7.
BMC Genomics ; 25(1): 719, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054472

RESUMEN

BACKGROUND: Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS: Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS: We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.


Asunto(s)
Leucocitos Mononucleares , Lipopolisacáridos , Poli I-C , Sitios de Carácter Cuantitativo , Animales , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Porcinos , Poli I-C/farmacología , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica
8.
BMC Plant Biol ; 24(1): 716, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060949

RESUMEN

BACKGROUND: Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS: Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION: These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.


Asunto(s)
Sitios de Carácter Cuantitativo , Superóxido Dismutasa , Triticum , Triticum/genética , Triticum/enzimología , Sitios de Carácter Cuantitativo/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Genes de Plantas , Grano Comestible/genética , Fenotipo
9.
Methods Mol Biol ; 2830: 107-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977572

RESUMEN

Seed dormancy is an important agronomic trait in cereal crops. Throughout the domestication of cereals, seed dormancy has been reduced to obtain uniform germination. However, grain crops must retain moderate levels of seed dormancy to prevent problems such as preharvest sprouting in wheat (Triticum aestivum) and barley (Hordeum vulgare). To produce modern cultivars with the appropriate seed dormancy levels, it is important to identify the genes responsible for seed dormancy. With recent advances in sequencing technology, several causal genes for seed dormancy quantitative trait loci (QTLs) have been identified in barley and wheat. Here, we present a method to identify causal genes for seed dormancy QTLs in barley, a method that is also applicable to other cereals.


Asunto(s)
Mapeo Cromosómico , Clonación Molecular , Hordeum , Latencia en las Plantas , Sitios de Carácter Cuantitativo , Hordeum/genética , Hordeum/crecimiento & desarrollo , Latencia en las Plantas/genética , Mapeo Cromosómico/métodos , Clonación Molecular/métodos , Genes de Plantas , Semillas/genética , Semillas/crecimiento & desarrollo , Cromosomas de las Plantas/genética
10.
Plant Physiol Biochem ; 214: 108941, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029307

RESUMEN

Arsenic, a hazardous heavy metal with potent carcinogenic properties, significantly affects key rice-producing regions worldwide. In this study, we present a quantitative trait locus (QTL) mapping investigation designed to identify candidate genes responsible for conferring tolerance to arsenic toxicity in rice (Oryza sativa L.) during the seedling stage. This study identified 17 QTLs on different chromosomes, including qCHC-1 and qCHC-3 on chromosome 1 and 3 related to chlorophyll content and qRFW-12 on chromosome 12 related to root fresh weight. Gene expression analysis revealed eight candidate genes exhibited significant upregulation in the resistant lines, OsGRL1, OsDjB1, OsZIP2, OsMATE12, OsTRX29, OsMADS33, OsABCG29, and OsENODL24. These genes display sequence alignment and phylogenetic tree similarities with other species and engaging in protein-protein interactions with significant proteins. Advanced gene-editing techniques such as CRISPR-Cas9 to precisely target and modify the candidate genes responsible for arsenic tolerance will be explore. This approach may expedite the development of arsenic-resistant rice cultivars, which are essential for ensuring food security in regions affected by arsenic-contaminated soil and water.


Asunto(s)
Arsénico , Oryza , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Oryza/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Arsénico/toxicidad , Sitios de Carácter Cuantitativo/genética , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Haploidia , Mapeo Cromosómico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cromosomas de las Plantas/genética
11.
Plants (Basel) ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891318

RESUMEN

Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.

12.
Plants (Basel) ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891341

RESUMEN

Deep sowing is an efficient strategy for maize to ensure the seedling emergence rate under adverse conditions such as drought or low temperatures. However, the genetic basis of deep-sowing tolerance-related traits in maize remains largely unknown. In this study, we performed a genome-wide association study on traits related to deep-sowing tolerance, including mesocotyl length (ML), coleoptile length (CL), plumule length (PL), shoot length (SL), and primary root length (PRL), using 255 maize inbred lines grown in three different environments. We identified 23, 6, 4, and 4 quantitative trait loci (QTLs) associated with ML, CL, PL, and SL, respectively. By analyzing candidate genes within these QTLs, we found a γ-tubulin-containing complex protein, ZmGCP2, which was significantly associated with ML, PL, and SL. Loss of function of ZmGCP2 resulted in decreased PL, possibly by affecting the cell elongation, thus affecting SL. Additionally, we identified superior haplotypes and allelic variations of ZmGCP2 with a longer PL and SL, which may be useful for breeding varieties with deep-sowing tolerance to improve maize cultivation.

13.
Cell Syst ; 15(6): 497-509.e3, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38866010

RESUMEN

Susceptibility to metabolic syndrome (MetS) is dependent on genetics, environment, and gene-by-environment interactions, rendering the study of underlying mechanisms challenging. The majority of experiments in model organisms do not incorporate genetic variation and lack specific evaluation criteria for MetS. Here, we derived a continuous metric, the metabolic health score (MHS), based on standard clinical parameters and defined its molecular signatures in the liver and circulation. In human UK Biobank, the MHS associated with MetS status and was predictive of future disease incidence, even in individuals without MetS. Using quantitative trait locus analyses in mice, we found two MHS-associated genetic loci and replicated them in unrelated mouse populations. Through a prioritization scheme in mice and human genetic data, we identified TNKS and MCPH1 as candidates mediating differences in the MHS. Our findings provide insights into the molecular mechanisms sustaining metabolic health across species and uncover likely regulators. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Síndrome Metabólico , Sitios de Carácter Cuantitativo , Animales , Ratones , Sitios de Carácter Cuantitativo/genética , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Humanos , Masculino , Predisposición Genética a la Enfermedad/genética , Femenino , Ratones Endogámicos C57BL , Estudio de Asociación del Genoma Completo/métodos , Biología de Sistemas/métodos
14.
Genes (Basel) ; 15(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38927754

RESUMEN

Chickpea (Cicer arietinum) is a major food legume providing high quality nutrition, especially in developing regions. Chickpea wilt (Fusarium oxysporum f. sp. ciceris) causes significant annual losses. Integrated disease management of Fusarium wilt is supported by resistant varieties. Relatively few resistance genes are known so there is value in exploring genetic resources in chickpea wild relatives. This study investigates the inheritance of Fusarium wilt resistance (race 2) in recombinant inbred lines (RILs) from a cross between a cultivated susceptible chickpea variety (Gokce) and a wild resistant Cicer reticulatum line (Kayat-077). RILs, parents, resistant and susceptible tester lines were twice grown in the greenhouse with inoculation and disease symptoms scored. DNA was extracted from dried leaves and individuals were single nucleotide polymorphism (SNP) genotyped. SNPs were placed on the reference chickpea genome and quantitative trait locus (QTL) mapping was performed. Significant QTL regions were examined using PulseDB to identify candidate genes. The results showed the segregation of Fusarium wilt resistance conforming to a single gene inheritance. One significant QTL was found at the start of chromosome 8, containing 138 genes, three of which were disease-resistance candidates for chickpea breeding.


Asunto(s)
Mapeo Cromosómico , Cicer , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Cicer/genética , Cicer/microbiología , Cicer/inmunología , Fusarium/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico/métodos , Fitomejoramiento/métodos
15.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928265

RESUMEN

Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In this study, we analyzed the total AC (TAC) and its constituent fractions, the hot water-soluble amylose content (SAC) and hot water-insoluble amylose content (IAC), in two sets of related chromosome segment substitution lines of rice with a common genetic background grown in two years. We searched for quantitative trait loci (QTLs) associated with SAC, IAC, and TAC and identified one common QTL (qSAC-6, qIAC-6, and qTAC-6) on chromosome 6. Map-based cloning revealed that the gene underlying the trait associated with this common QTL is Waxy (Wx). An analysis of the colors of soluble and insoluble starch-iodine complexes and their λmax values (wavelengths at the positions of their peak absorbance values) as well as gel permeation chromatography revealed that Wx is responsible for the biosynthesis of amylose, comprising a large proportion of the soluble fractions of the SAC. Wx is also involved in the biosynthesis of long chains of amylopectin, comprising the hot water-insoluble fractions of the IAC. These findings highlight the pleiotropic effects of Wx on the SAC and IAC. This pleiotropy indicates that these traits have a positive genetic correlation. Therefore, further studies of rice quality should use rice varieties with the same Wx genotype to eliminate the pleiotropic effects of this gene, allowing the independent relationship between the SAC or IAC and rice quality to be elucidated through a multiple correlation analysis. These findings are applicable to other valuable cereal crops as well.


Asunto(s)
Amilosa , Oryza , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Solubilidad , Oryza/genética , Oryza/metabolismo , Amilosa/metabolismo , Amilosa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/química , Grano Comestible/genética , Grano Comestible/metabolismo , Pleiotropía Genética , Calor , Mapeo Cromosómico , Almidón Sintasa/genética , Almidón Sintasa/metabolismo
16.
Plants (Basel) ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931094

RESUMEN

Although the root-lesion nematode Pratylenchus thornei is known to affect barley (Hordeum vulgare L.), there have been no reports on the genetic control of P. thornei resistance in barley. In this research, P. thornei resistance was assessed for a panel of 46 barley mapping parents and for two mapping populations (Arapiles/Franklin and Denar/Baudin). With both populations, a highly significant quantitative trait locus (QTL) was mapped at the same position on the long arm of chromosome 7H. Single-nucleotide polymorphisms (SNPs) in this region were anchored to an RGT Planet pan-genome assembly and assayed on the mapping parents and other barley varieties. The results indicate that Arapiles, Denar, RGT Planet and several other varieties likely have the same resistance gene on chromosome 7H. Marker assays reported here could be used to select for P. thornei resistance in barley breeding. Analysis of existing barley pan-genomic and pan-transcriptomic data provided a list of candidate genes along with information on the expression and differential expression of some of those genes in barley root tissue. Further research is required to identify a specific barley gene that affects root-lesion nematode resistance.

17.
Front Plant Sci ; 15: 1395223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933466

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease that affects wheat worldwide. There is a great need to develop cultivars with combinations of all-stage resistance (ASR) and adult-plant resistance (APR) genes for sustainable control of the disease. QYrsv.swust-1BL in the Italian durum wheat (Triticum turgidum ssp. durum) cultivar Svevo is effective against Pst races in China and Israel, and the gene has been previously mapped to the long arm of chromosome 1B. The gene is flanked by SNP (single nucleotide polymorphism) markers IWB5732 and IWB4839 (0.75 cM). In the present study, we used high-density 660K SNP array genotyping and the phenotypes of 137 recombinant inbred lines (RILs) to fine map the QYrsv.swust-1BL locus within a 1.066 Mb region in durum wheat Svevo (RefSeq Rel. 1.0) on chromosome arm 1BL. The identified 1.066 Mb region overlaps with a previously described map of Yr29/QYr.ucw-1BL, a stripe rust APR gene. Twenty-five candidate genes for QYrsv.swut-1BL were identified through comparing polymorphic genes within the 1.066 Mb region in the resistant cultivar. SNP markers were selected and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. Five KASP markers based on SNP were validated in a F2 and F2:3 breeding population, providing further compelling evidence for the significant effects of QYrsv.swut-1BL. These markers should be useful in marker-assisted selection for incorporating Yr29/QYrsv.swust-1BL into new durum and common wheat cultivars for resistance to stripe rust.

18.
J Exp Bot ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938160

RESUMEN

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

19.
Front Plant Sci ; 15: 1377682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736450

RESUMEN

High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.

20.
Front Plant Sci ; 15: 1383396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708394

RESUMEN

Introduction: Chocolate spot, caused by the ascomycete fungus Botrytis fabae, is a devastating foliar disease and a major constraint on the quality and yield of faba beans (Vicia faba). The use of fungicides is the primary strategy for controlling the disease. However, high levels of partial genetic resistance have been identified and can be exploited to mitigate the disease. Methods: The partially resistant V. faba cultivar Maris Bead and susceptible Egyptian accession ig70726 were crossed, and a genetic mapping population of 184 individuals was genotyped in the F2 generation and screened for resistance to B. fabae infection in the F3, F5, and F6 generations in a series of field experiments. A high-density linkage map of V. faba containing 3897 DArT markers spanning 1713.7 cM was constructed. Results: Multiple candidate quantitative trait loci (QTLs) in 11 separate regions of the V. faba genome were identified; some on chromosomes 2, 3, and 6 overlapped with loci previously linked to resistance to Ascochyta leaf and pod blight caused by the necrotrophic fungus Ascochyta fabae. A transcriptomics experiment was conducted at 18 h post-inoculation in seedlings of both parents of the mapping population, identifying several differentially expressed transcripts potentially involved in early stage defence against B. fabae, including cell-wall associated protein kinases, NLR genes, and genes involved in metabolism and response to reactive oxygen species. Discussion: This study identified several novel candidate QTLs in the V. faba genome that contribute to partial resistance to chocolate spot, but differences between growing seasons highlighted the importance of multi-year phenotyping experiments when searching for candidate QTLs for partial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA