Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667867

RESUMEN

Quantum walks have proven to be a universal model for quantum computation and to provide speed-up in certain quantum algorithms. The discrete-time quantum walk (DTQW) model, among others, is one of the most suitable candidates for circuit implementation due to its discrete nature. Current implementations, however, are usually characterized by quantum circuits of large size and depth, which leads to a higher computational cost and severely limits the number of time steps that can be reliably implemented on current quantum computers. In this work, we propose an efficient and scalable quantum circuit implementing the DTQW on the 2n-cycle based on the diagonalization of the conditional shift operator. For t time steps of the DTQW, the proposed circuit requires only O(n2+nt) two-qubit gates compared to the O(n2t) of the current most efficient implementation based on quantum Fourier transforms. We test the proposed circuit on an IBM quantum device for a Hadamard DTQW on the 4-cycle and 8-cycle characterized by periodic dynamics and by recurrent generation of maximally entangled single-particle states. Experimental results are meaningful well beyond the regime of few time steps, paving the way for reliable implementation and use on quantum computers.

2.
Entropy (Basel) ; 25(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136490

RESUMEN

A Multilayer network is a potent platform that paves the way for the study of the interactions among entities in various networks with multiple types of relationships. This study explores the dynamics of discrete-time quantum walks on a multilayer network. We derive a recurrence formula for the coefficients of the wave function of a quantum walker on an undirected graph with a finite number of nodes. By extending this formula to include extra layers, we develop a simulation model to describe the time evolution of the quantum walker on a multilayer network. The time-averaged probability and the return probability of the quantum walker are studied with Fourier, and Grover walks on multilayer networks. Furthermore, we analyze the impact of decoherence on quantum transport, shedding light on how environmental interactions may impact the behavior of quantum walkers on multilayer network structures.

3.
Natl Sci Rev ; 10(8): nwad005, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37389137

RESUMEN

Topological edge states arise in non-Hermitian parity-time ([Formula: see text])-symmetric systems, and manifest themselves as bright or dark edge states, depending on the imaginary components of their eigenenergies. As the spatial probabilities of dark edge states are suppressed during the non-unitary dynamics, it is a challenge to observe them experimentally. Here we report the experimental detection of dark edge states in photonic quantum walks with spontaneously broken [Formula: see text] symmetry, thus providing a complete description of the topological phenomena therein. We experimentally confirm that the global Berry phase in [Formula: see text]-symmetric quantum-walk dynamics unambiguously defines topological invariants of the system in both the [Formula: see text]-symmetry-unbroken and -broken regimes. Our results establish a unified framework for characterizing topology in [Formula: see text]-symmetric quantum-walk dynamics, and provide a useful method to observe topological phenomena in [Formula: see text]-symmetric non-Hermitian systems in general.

4.
Entropy (Basel) ; 25(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238485

RESUMEN

Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state-of-the-art.

5.
Biosystems ; 223: 104822, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36526010

RESUMEN

Proteins are considered as the working force of cells. Their functionality is determined by their spatial form. In 1973 Anfinsen proposed that the spatial form is determined by the sequence of amino acids in the protein backbone. Yet, the number of possible sequences as well as the possible configurations is very large, making the task of predicting the protein's spatial form very difficult. Many approaches have been proposed, both classical and hybrid quantum - classical ones. We propose a novel hybrid algorithm. In our approach we utilized quantum walks, a proven model for universal quantum computation. We considered a simplified version of the protein backbone to be the evolution space of the quantum walk. The dihedral angles φ and ψ are introduced as phase factors to the quantum walk evolution. We also utilized a cost function to describe the system, where the R - chain, describing the specific amino acid, corresponds to a discrete value, affecting the cost functions value. Our aim is to minimize the cost function value, by updating the dihedral angles for specific regions of the Ramachandran plot, using a Metropolis algorithm.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Proteínas/química , Pliegue de Proteína , Aminoácidos , Algoritmos , Conformación Proteica
6.
Entropy (Basel) ; 24(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36554183

RESUMEN

We present various results on the scheme introduced in a previous work, which is a quantum spatial-search algorithm on a two-dimensional (2D) square spatial grid, realized with a 2D Dirac discrete-time quantum walk (DQW) coupled to a Coulomb electric field centered on the the node to be found. In such a walk, the electric term acts as the oracle of the algorithm, and the free walk (i.e., without electric term) acts as the "diffusion" part, as it is called in Grover's algorithm. The results are the following. First, we run long time simulations of this electric Dirac DQW, and observe that there is a second localization peak around the node marked by the oracle, reached in a time O(N), where N is the number of nodes of the 2D grid, with a localization probability scaling as O(1/lnN). This matches the state-of-the-art 2D-DQW search algorithms before amplitude amplification We then study the effect of adding noise on the Coulomb potential, and observe that the walk, especially the second localization peak, is highly robust to spatial noise, more modestly robust to spatiotemporal noise, and that the first localization peak is even highly robust to spatiotemporal noise.

7.
Entropy (Basel) ; 23(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34828139

RESUMEN

Electric Dirac quantum walks, which are a discretisation of the Dirac equation for a spinor coupled to an electric field, are revisited in order to perform spatial searches. The Coulomb electric field of a point charge is used as a non local oracle to perform a spatial search on a 2D grid of N points. As other quantum walks proposed for spatial search, these walks localise partially on the charge after a finite period of time. However, contrary to other walks, this localisation time scales as N for small values of N and tends asymptotically to a constant for larger Ns, thus offering a speed-up over conventional methods.

8.
Entropy (Basel) ; 22(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33285902

RESUMEN

Existence of the eigenvalues of the discrete-time quantum walks is deeply related to localization of the walks. We revealed, for the first time, the distributions of the eigenvalues given by the splitted generating function method (the SGF method) of the space-inhomogeneous quantum walks in one dimension we had treated in our previous studies. Especially, we clarified the characteristic parameter dependence for the distributions of the eigenvalues with the aid of numerical simulation.

9.
Entropy (Basel) ; 22(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33287086

RESUMEN

We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice with an impurity and use the quantum Fisher information as a means to quantify the maximal possible accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker and derive the reflection and transmission probabilities of the scattered state. We show that while the quantum Fisher information is affected by the width and central momentum of the initial wave packet, this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position measurement provides a nearly optimal detection scheme.

10.
Sensors (Basel) ; 20(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486383

RESUMEN

Traditionally, tamper-proof steganography involves using efficient protocols to encrypt the stego cover image and/or hidden message prior to embedding it into the carrier object. However, as the inevitable transition to the quantum computing paradigm beckons, its immense computing power will be exploited to violate even the best non-quantum, i.e., classical, stego protocol. On its part, quantum walks can be tailored to utilise their astounding 'quantumness' to propagate nonlinear chaotic behaviours as well as its sufficient sensitivity to alterations in primary key parameters both important properties for efficient information security. Our study explores using a classical (i.e., quantum-inspired) rendition of the controlled alternate quantum walks (i.e., CAQWs) model to fabricate a robust image steganography protocol for cloud-based E-healthcare platforms by locating content that overlays the secret (or hidden) bits. The design employed in our technique precludes the need for pre and/or post encryption of the carrier and secret images. Furthermore, our design simplifies the process to extract the confidential (hidden) information since only the stego image and primary states to run the CAQWs are required. We validate our proposed protocol on a dataset of medical images, which exhibited remarkable outcomes in terms of their security, good visual quality, high resistance to data loss attacks, high embedding capacity, etc., making the proposed scheme a veritable strategy for efficient medical image steganography.


Asunto(s)
Algoritmos , Nube Computacional , Seguridad Computacional , Procesamiento de Imagen Asistido por Computador , Telemedicina , Teoría Cuántica
11.
Entropy (Basel) ; 21(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33267042

RESUMEN

We consider the problem of measuring the similarity between two graphs using continuous-time quantum walks and comparing their time-evolution by means of the quantum Jensen-Shannon divergence. Contrary to previous works that focused solely on undirected graphs, here we consider the case of both directed and undirected graphs. We also consider the use of alternative Hamiltonians as well as the possibility of integrating additional node-level topological information into the proposed framework. We set up a graph classification task and we provide empirical evidence that: (1) our similarity measure can effectively incorporate the edge directionality information, leading to a significant improvement in classification accuracy; (2) the choice of the quantum walk Hamiltonian does not have a significant effect on the classification accuracy; (3) the addition of node-level topological information improves the classification accuracy in some but not all cases. We also theoretically prove that under certain constraints, the proposed similarity measure is positive definite and thus a valid kernel measure. Finally, we describe a fully quantum procedure to compute the kernel.

12.
Entropy (Basel) ; 20(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33265525

RESUMEN

We study the solutions of an interacting Fermionic cellular automaton which is the analogue of the Thirring model with both space and time discrete. We present a derivation of the two-particle solutions of the automaton recently in the literature, which exploits the symmetries of the evolution operator. In the two-particle sector, the evolution operator is given by the sequence of two steps, the first one corresponding to a unitary interaction activated by two-particle excitation at the same site, and the second one to two independent one-dimensional Dirac quantum walks. The interaction step can be regarded as the discrete-time version of the interacting term of some Hamiltonian integrable system, such as the Hubbard or the Thirring model. The present automaton exhibits scattering solutions with nontrivial momentum transfer, jumping between different regions of the Brillouin zone that can be interpreted as Fermion-doubled particles, in stark contrast with the customary momentum-exchange of the one-dimensional Hamiltonian systems. A further difference compared to the Hamiltonian model is that there exist bound states for every value of the total momentum and of the coupling constant. Even in the special case of vanishing coupling, the walk manifests bound states, for finitely many isolated values of the total momentum. As a complement to the analytical derivations we show numerical simulations of the interacting evolution.

13.
Entropy (Basel) ; 20(10)2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33265820

RESUMEN

We present a review of photonic implementations of discrete-time quantum walks (DTQW) in the spatial and temporal domains, based on spatial- and time-multiplexing techniques, respectively. Additionally, we propose a detailed novel scheme for photonic DTQW, using transverse spatial modes of single photons and programmable spatial light modulators (SLM) to manipulate them. Unlike all previous mode-multiplexed implementations, this scheme enables simulation of an arbitrary step of the walker, only limited, in principle, by the SLM resolution. We discuss current applications of such photonic DTQW architectures in quantum simulation of topological effects and the use of non-local coin operations based on two-photon hybrid entanglement.

14.
Philos Trans A Math Phys Eng Sci ; 375(2106)2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-28971946

RESUMEN

We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group [Formula: see text], which in an appropriate regime evolves according to Weyl's equation. The Weyl quantum walk was recently derived as the unique unitary evolution on a Cayley graph of [Formula: see text] that is homogeneous and isotropic. The general solution of the quantum walk evolution is provided here in the position representation, by the analytical expression of the propagator, i.e. transition amplitude from a node of the graph to another node in a finite number of steps. The quantum nature of the walk manifests itself in the interference of the paths on the graph joining the given nodes. The solution is based on the binary encoding of the admissible paths on the graph and on the semigroup structure of the walk transition matrices.This article is part of the themed issue 'Second quantum revolution: foundational questions'.

15.
Sci Adv ; 2(1): e1501054, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27152325

RESUMEN

Multiphoton propagation in connected structures-a quantum walk-offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication.


Asunto(s)
Modelos Teóricos , Fibras Ópticas , Fotones , Teoría Cuántica
16.
Philos Trans A Math Phys Eng Sci ; 374(2068)2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-27091171

RESUMEN

We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras.

17.
Top Cogn Sci ; 5(4): 818-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24019237

RESUMEN

In recent years quantum probability models have been used to explain many aspects of human decision making, and as such quantum models have been considered a viable alternative to Bayesian models based on classical probability. One criticism that is often leveled at both kinds of models is that they lack a clear interpretation in terms of psychological mechanisms. In this paper we discuss the mechanistic underpinnings of a quantum walk model of human decision making and response time. The quantum walk model is compared to standard sequential sampling models, and the architectural assumptions of both are considered. In particular, we show that the quantum model has a natural interpretation in terms of a cognitive architecture that is both massively parallel and involves both co-operative (excitatory) and competitive (inhibitory) interactions between units. Additionally, we introduce a family of models that includes aspects of the classical and quantum walk models.


Asunto(s)
Cognición , Toma de Decisiones/fisiología , Modelos Psicológicos , Teoría de la Probabilidad , Probabilidad , Teoría Cuántica , Humanos , Tiempo de Reacción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA