RESUMEN
Plant diversity includes over 300,000 species, and leaf structure is one of the main targets of selection, being highly variable in shape and size. On the other hand, the optimization of antenna design has no unique solution to satisfy the current range of applications. We analyzed the foliar geometries of 100 plant species and applied them as a biomimetic design template for microstrip patch antenna systems. From this set, a subset of seven species were further analyzed, including species from tropical and temperate forests across the phylogeny of the Angiosperms. Foliar geometry per species was processed by image processing analyses, and the resultant geometries were used in simulations of the reflection coefficients and the radiation patterns via finite differences methods. A value below -10 dB is set for the reflection coefficient to determine the operation frequencies of all antenna elements. All species showed between 3 and 15 operational frequencies, and four species had operational frequencies that included the 2.4 and 5 GHz bands. The reflection coefficients and the radiation patterns in most of the designs were equal or superior to those of conventional antennas, with several species showing multiband effects and omnidirectional radiation. We demonstrate that plant structures can be used as a biomimetic tool in designing microstrip antenna for a wide range of applications.
RESUMEN
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90∘ to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed. Through electric field control of the chemical potentials of the graphene elements, the antenna can provide a quasi-omnidirectional diagram, a one- or two-directional beam regime, dynamic control of the beam width and, due to the vertical orientation of the dipole with respect to the base substrate, a 360∘ beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in the θ-direction. Radiation patterns in different working states of the antenna are considered using symmetry arguments. We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio, and gain. An equivalent circuit of the antenna is suggested. The proposed antenna operates at frequencies between 1.75 THz and 2.03 THz. Depending on the active regime defined by the chemical potentials set on the antenna graphene elements, the maximum gain varies from 0.86 to 1.63.
RESUMEN
We demonstrate a concept for a large enhancement of the directivity and gain of readily available cm- and mm-wave antennas, i.e., without altering any property of the antenna design. Our concept exploits the high reflectivity of a Bragg reflector composed of three bilayers made of transparent materials. The cavity has a triangular aperture in order to resemble the idea of a horn-like, highly directive antenna. Importantly, we report gain enhancements of more than 400% in relation to the gain of the antenna without the Bragg structure, accompanied by a highly directive radiation pattern. The proposed structure is cost-effective and easy to fabricate with 3D-printing. Our results are presented for frequencies within the conventional WiFi frequencies, based on IEEE 802.11 standards, thus, enabling easily implementation by non-experts and needing only to be placed around the antenna to improve the directivity and gain of the signal.