Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; : e0096024, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230306

RESUMEN

CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation that occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here, we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site, and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in the presence of CD4mc. IMPORTANCE: There are several reasons that make it difficult to target the HIV reservoir. One of them is the capacity of infected cells to prevent the recognition of HIV-1 envelope glycoproteins (Env) by commonly elicited antibodies in people living with HIV. Small CD4-mimetic compounds expose otherwise occluded Env epitopes, thus enabling their recognition by non-neutralizing antibodies (nnAbs). A better understanding of the contribution of these antibodies to eliminate infected cells in the presence of CD4mc could lead to the development of therapeutic cure strategies.

2.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38889725

RESUMEN

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Asunto(s)
Patos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Antígenos de Histocompatibilidad Clase II , Virus de la Influenza A , Filogenia , Receptores Virales , Animales , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Receptores Virales/metabolismo , Receptores Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Patos/virología , Humanos , Internalización del Virus , Gripe Aviar/virología , Sitios de Unión , Unión Proteica , Cristalografía por Rayos X , Línea Celular , Ácido N-Acetilneuramínico/metabolismo , Especificidad del Huésped , Especificidad de la Especie
3.
Adv Sci (Weinh) ; 11(32): e2401492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38932472

RESUMEN

Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFß/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.


Asunto(s)
Alelos , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Proteínas de Homeodominio , Neoplasias de la Próstata , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética
4.
Cell Host Microbe ; 32(2): 261-275.e4, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38307019

RESUMEN

Hemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype. This change in receptor engagement is accompanied by an extension of the traditional receptor-binding site to include residues in key antigenic sites on the surface of HA trimers. These results help explain the propensity for selection of antigenic variants, leading to vaccine mismatching, when H3N2 viruses are propagated in chicken eggs or cells that do not contain such receptors.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Animales , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Receptores Virales/química , Ácidos Siálicos/metabolismo , Polisacáridos/metabolismo , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza
5.
Biomater Adv ; 144: 213217, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36502748

RESUMEN

The off-target toxicity of molecular targeted drug hinders its clinical transformation. Herein, we report a new molecular targeted drug oHA-GX1 constructed by oligomeric hyaluronan (oHA) and peptide GX1 (CGNSNPKSC). The oHA-GX1 can not only suppress the tumor growth by interacting with overexpressed VEGF and CD44 receptors inside tumor tissues, but also reduce the likelihood of off-target toxicity due to the multiple VEGF and CD44 receptors binding sites. The cytotoxicity study shows that the IC50oHA-GX1 against co-SGC-7901 and co-HUVEC cells fell in the range of common cytotoxic drugs. The animal experiment results reveal that the tumor inhibition rate of oHA-GX1 (100 mg/kg) against SGC-7901 tumor-bearing mice were 78.4 %, which was comparable to that of front-line chemotherapy drugs. Also, the cytotoxicity study on normal cells, hemolysis test, hemagglutination assay and the acute toxicity test demonstrate that oHA-GX1 exhibited excellent biosafety. This molecular targeted drug that utilizes the multiple receptor-binding sites to get rid of the side effects caused by off-target paves a new direction for the discovery of anticancer drugs with high efficacy and low adverse effects.


Asunto(s)
Antineoplásicos , Ácido Hialurónico , Animales , Ratones , Ácido Hialurónico/química , Factor A de Crecimiento Endotelial Vascular , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular
6.
Antiviral Res ; 206: 105399, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007601

RESUMEN

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.


Asunto(s)
Filoviridae , Receptores Virales , Inhibidores de Proteínas Virales de Fusión , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Ebolavirus/fisiología , Endosomas/metabolismo , Filoviridae/química , Filoviridae/efectos de los fármacos , Fiebre Hemorrágica Ebola , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Inhibidores de Proteínas Virales de Fusión/química , Inhibidores de Proteínas Virales de Fusión/farmacología , Internalización del Virus/efectos de los fármacos
7.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35337099

RESUMEN

Influenza still represents a problematic disease, involving millions of people every year and causing hundreds of thousands of deaths. Only a few drugs are clinically available. The search for an effective weapon is still ongoing. In this scenario, we recently identified new drug-like compounds with antiviral activity toward two A/H1N1 Influenza virus strains, which were demonstrated to interfere with the processes mediated by hemagglutinin (HA). In the present work, the compound's ability to act against the A/H3N2 viral strain has been evaluated in hemagglutination inhibition (HI) assays. Two of the five tested compounds were also active toward the A/H3N2 Influenza virus. To validate the scaffold activity, analogue compounds of two broad-spectrum molecules were selected and purchased for HI testing on both A/H1N1 and A/H3N2 Influenza viruses. Forty-three compounds were tested, and four proved to be active toward all three viral strains. A computational study has been carried out to depict the HA binding process of the most interesting compounds.

8.
Virus Res ; 313: 198745, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306102

RESUMEN

The H9N2 subtype of influenza A virus circulates frequently among poultry in Asian and North African countries causing economic loss in the poultry sector. The antigenic variations of the H9N2 virus were at the origin of its genetic evolution through the emergence of viral strains transmissible to humans and resistant to chemical antivirals, which require a strengthening of the fight means against this virus. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select new antiviral peptides that inhibit the infectivity of H9N2 virus. After three rounds of stringent selection and amplification, polyclonal phage-peptides directed against H9N2 virus were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to H9N2 virus by monoclonal phage ELISA. The DNA of 27 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences were deduced. Sixteen different phage-peptides were able to bind specifically the H9N2 virus, among them, 13 phage-peptides interacted with the hemagglutinin H9. Two selected peptides, P1 (LSRMPK) and P2 (FAPRWR) have shown antiviral activity in ovo and P1 was more protective in vivo then P2 when co-administered with the H9N2 virus. Mechanistically, these peptides prevent infection by inhibiting the attachment of the H9N2 virus to the cellular receptor. Molecular docking revealed that the peptides LSRMPK and FAPRWR bind to hemagglutinin protein H9, but interact differently with the receptor binding site (RBS). The present study demonstrated that the peptide P1 (LSRMPK) could be used as a new inhibitory molecule directed against the H9N2 virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Antivirales/farmacología , Células Epiteliales , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Simulación del Acoplamiento Molecular , Acoplamiento Viral
9.
J Bioinform Comput Biol ; 20(1): 2150034, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061973

RESUMEN

HCoV-HKU1 is a [Formula: see text]-coronavirus with low pathogenicity, which usually leads to respiratory diseases. At present, a controversial issue is that whether the receptor binding site (RBS) of HCoV-HKU1 is located in the N-terminal domain (NTD) or the C-terminal domain (CTD) in the HCoV-HKU1 S protein. To address this issue, we used molecular docking technology to dock the NTD and CTD with 9-oxoacetylated sialic acid (9-O-Ac-Sia), respectively, with the results showing that the RBS of HCoV-HKU1 is located in the NTD (amino acid residues 80-95, 25-32). Our findings clarified the structural basis and molecular mechanism of the HCoV-HKU1 infection, providing important information for the development of therapeutic antibody drugs and the design of vaccines.


Asunto(s)
Coronavirus , Glicoproteína de la Espiga del Coronavirus , Betacoronavirus/metabolismo , Sitios de Unión , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Vaccines (Basel) ; 9(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064480

RESUMEN

(1) Background: Ebolavirus (EBOV) poses as a significant threat for human health by frequently causing epidemics of the highly contagious Ebola virus disease (EVD). EBOV glycoprotein (GP), as a sole surface glycoprotein, needs to be cleaved in endosomes to fully expose a receptor-binding domain (RBD) containing a receptor-binding site (RBS) for receptor binding and genome entry into cytoplasm for replication. RBDs are highly conserved among EBOV species, so they are an attractive target for broadly effective anti-EBOV drug development. (2) Methods: Phage display technology was used as a tool to isolate human single-chain antibodies (HuscFv) that bind to recombinant RBDs from a human scFv (HuscFv) phage display library. The RBD-bound HuscFvs were fused with cell-penetrating peptide (CPP), and cell-penetrating antibodies (transbodies) were made, produced from the phage-infected E. coli clones and characterized. (3) Results: Among the HuscFvs obtained from phage-infected E. coli clones, HuscFvs of three clones, HuscFv4, HuscFv11, and HuscFv14, the non-cell-penetrable or cell-penetrable HuscFv4 effectively neutralized cellular entry of EBOV-like particles (VLPs). While all HuscFvs were found to bind cleaved GP (GPcl), their presumptive binding sites were markedly different, as determined by molecular docking. (4) Conclusions: The HuscFv4 could be a promising therapeutic agent against EBOV infection.

11.
Antiviral Res ; 189: 105059, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705865

RESUMEN

Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 µM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 µM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Infecciones por Filoviridae/virología , Marburgvirus/efectos de los fármacos , Proteína Niemann-Pick C1/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Antivirales/química , Sitios de Unión , Supervivencia Celular , Descubrimiento de Drogas , Ebolavirus/fisiología , Infecciones por Filoviridae/tratamiento farmacológico , Células HeLa , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Marburgvirus/fisiología , Simulación del Acoplamiento Molecular , Proteína Niemann-Pick C1/química , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo
12.
BMC Biol ; 18(1): 91, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32693837

RESUMEN

BACKGROUND: The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS: N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION: Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.


Asunto(s)
VIH-1/fisiología , Receptores del VIH/genética , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/metabolismo , Humanos , Receptores del VIH/metabolismo
13.
J Mol Graph Model ; 97: 107580, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32193088

RESUMEN

Influenza B virus has two distinct lineages (Victoria and Yamagata) and are associated with seasonal influenza epidemics that cause respiratory illness. Influenza B hemagglutinin (HA) is a major surface glycoprotein with the receptor-binding site (RBS) primarily involved in viral pathogenesis. Generally, influenza B exclusively infects the human population which would insinuate that the structural variability of the influenza B HA RBS rarely changes. However, to our knowledge, the potential impact of variations in the influenza B HA RBS structural variability was not fully elucidated. Throughout this study, we generated models from the transitioning (evolving viral lineage) 1998-2018 influenza B/Yamagata HA, verified the quality of each HA model, performed HA RBS structural variability measurements, superimposed varying HA models for comparison, and designed a phylogenetic tree network for further analyses. We found that measurements of the transitioning HA RBS structural variability were generally maintained and, similarly, measurements of the altered (years that differed from the evolving viral lineage, specifically 2003, 2007, 2017) HA RBS structural variability differed from the transitioning HA RBS. Moreover, we observed that the altered HA RBS structural variability favored the formation of a putative Y202-H191 hydrogen bond which we postulate may increase structural stability, thereby, allowing for a winter infection of the virus. Furthermore, we established that changes in HA RBS structural variability does not influence viral evolution, but putatively seasonal infection.


Asunto(s)
Gripe Humana , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Filogenia , Estaciones del Año
14.
J Mol Graph Model ; 89: 33-40, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30849718

RESUMEN

Influenza A H3N2 has been linked to annual outbreaks within the human population attributable to continuous structural changes. H3N2 HA contains well identified antigenic sites and receptor-binding sites (RBS) that are possibly correlated to viral evolution and infection. However, the structural significance of amino acid residues associated with both viral evolution and infection were not fully demonstrated. Throughout this study, we generated and analyzed H3N2 HA models that represented the clade 3C.2 population (comprised of clades 3C.2, 3C.2a, and 3C.21 from the transitioning 2014-2018 H3N2 strains) and 3C.3a (from the 2016 H3N2 strain). Model quality estimation, structural analyses and superimposition, and network analytics of H3N2 HA1 evolution were performed. We found that the structural properties of residues 158-160 could influence the overall HA backbone. More specifically, amino acid substitutions at residues 159-160 affected the amino acid orientation at residue 158, thereby, causing the overall HA backbone structure to vary. Our results were consistent with 1968-2018 HA1 evolution. Taken together, we propose that our results would highlight the structural significance of residues 158-160 in HA1 for both antigenic drift and RBS.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Mutación , Conformación Proteica , Evolución Biológica , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Gripe Humana/virología , Modelos Moleculares , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Relación Estructura-Actividad
15.
Virus Res ; 265: 132-137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926385

RESUMEN

In our previous study, we produced a monoclonal antibody EB2 that recognized an epitope in the HA1 domain on the hemagglutinin (HA) of H6N1 influenza virus (A/chicken/Taiwan/2838 V/00). The residue Arg-201 (R201) on this epitope was protected by the glycan at Asn-167 (N167) from tryptic digestion; therefore, the infectivity of the virus was retained. R201 was extremely conserved in various subtypes of the influenza virus. To explore the role of R201 and the protecting glycan, we developed a bi-cistronic baculovirus expression system for the production of H6HA1 and H6HA0 (nearly full-length HA), which were glycosylated in insect cells. The expressed H6HA1 was mostly found in the trimeric form, and the H6HA0 protein was only found in the monomeric form. The trimeric H6HA1 was resistant to tryptic digestion; however, it could not bind to fetuin, a glycoprotein containing sialylated N-linked and O-linked glycans. By contrast, the monomeric H6HA0 could bind to fetuin but was sensitive to tryptic digestion. We found that the positive charge on R201 was critical for binding HA to the negatively charged surface of host cells because the mutant R201A of H6HA0 lost its binding capacity substantially. Moreover, this binding capacity was dependent on the pH value and inhibited by free electrically charged amino acids. We propose a two-step model for binding the influenza virus with a host cell. The first step involved the specific recognition of the receptor binding site on HA to the sialylated glycan on the host cell. After the virus is engulfed by the acidic endosome, R201 could bind to the cell surface with stronger interactions and trigger the fusion process.


Asunto(s)
Arginina/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Interacciones Microbiota-Huesped , Virus de la Influenza A/fisiología , Internalización del Virus , Animales , Anticuerpos Monoclonales/inmunología , Baculoviridae/genética , Sitios de Unión , Pollos , Epítopos/inmunología , Glicosilación , Gripe Aviar/virología , Polisacáridos/inmunología
16.
Theranostics ; 9(1): 210-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662563

RESUMEN

Broadly neutralizing antibodies (bnAbs) targeting the receptor binding site (RBS) of hemagglutinin (HA) have potential for developing into powerful anti-influenza agents. Several previously reported influenza B bnAbs are nevertheless unable to neutralize a portion of influenza B virus variants. HA-specific bnAbs with hemagglutination inhibition (HI) activity may possess the ability to block virus entry directly. Polymeric IgM antibodies are expected to more effectively inhibit virus attachment and entry into target cells due to their higher avidity and/or steric hindrance. We therefore hypothesized that certain RBS-targeted IgM antibodies with strong cross-lineage HI activity might display broader and more potent antiviral activity against rapidly evolving influenza B viruses. Methods: In this study, we generated IgM and IgG bnAbs targeting the RBS of influenza B virus using the murine hybridoma technique. IgM and IgG versions of the same antibodies were then developed by isotype switching and characterized in subsequent in vitro and in vivo experiments. Results: Two IgM and two IgG bnAbs against influenza B virus HA were identified. Of these, one IgM subtype antibody, C7G6-IgM, showed strong HI and neutralization activities against all 20 representative influenza B strains tested, with higher potency and broader breadth of anti-influenza activity in vitro than the IgG subtype variant of itself, or other previously-reported influenza B bnAbs. Furthermore, C7G6-IgM conferred excellent cross-protection against distinct lineages of influenza B viruses in mice and ferrets, performing better than the anti-influenza drug oseltamivir, and showed an additive antiviral effect when administered in combination with oseltamivir. Mechanistically, C7G6-IgM potently inhibits infection with influenza B virus strains from different lineages by blocking viral entry. Conclusion: In summary, our study highlights the potential of IgM subtype antibodies in combatting pathogenic microbes. Moreover, C7G6-IgM is a promising candidate for the development of prophylactics or therapeutics against influenza B infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina M/inmunología , Virus de la Influenza B/crecimiento & desarrollo , Virus de la Influenza B/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Pruebas de Inhibición de Hemaglutinación , Inmunización Pasiva/métodos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina M/administración & dosificación , Inmunoglobulina M/aislamiento & purificación , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/terapia , Resultado del Tratamiento
17.
J Biol Chem ; 293(42): 16503-16517, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30154240

RESUMEN

The highly pathogenic avian influenza virus H5N1 is a major threat to global public health and therefore a high-priority target of current vaccine development. The receptor-binding site (RBS) on the globular head of hemagglutinin (HA) in the viral envelope is one of the major target sites for antibody recognition against H5N1 and other influenza viruses. Here, we report the identification and characterization of a pair of human RBS-specific antibodies, designated FLD21.140 and AVFluIgG03, that are mutually complementary in their neutralizing activities against a diverse panel of H5N1 viruses. Crystallographic analysis and site-directed mutagenesis revealed that the two antibodies share a similar RBS-binding mode, and their individual specificities are governed by residues at positions 133a, 144, and 145. Specifically, FLD21.140 preferred Leu-133a/Lys-144/Ser-145, whereas AVFluIgG03 favored Ser-133a/Thr-144/Pro-145 residue triplets, both of which perfectly matched the most prevalent residues in viruses from epidemic-originating regions. Of note, according to an analysis of 3758 H5 HA sequences available in the Influenza Virus Database at the National Center for Biotechnology Information, the residues Leu-133a/Ser-133a and Ser-145/Pro-145 constituted more than 87.6 and 99.3% of all residues at these two positions, respectively. Taken together, our results provide a structural understanding for the neutralizing complementarity of these two antibodies and improve our understanding of the RBS-specific antibody response against H5N1 infection in humans.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Receptores Virales/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Especificidad de la Especie
18.
Virology ; 522: 37-45, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30014856

RESUMEN

Ducks, gulls and shorebirds represent the major hosts of influenza A viruses (IAVs) in nature, but distinctions of IAVs in different birds are not well defined. Here we characterized the receptor specificity of gull IAVs with HA subtypes H4, H6, H14, H13 and H16 using synthetic sialylglycopolymers. In contrast to duck IAVs, gull IAVs efficiently bound to fucosylated receptors and often preferred sulfated and non-sulfated receptors with Galß1-4GlcNAc cores over the counterparts with Galß1-3GlcNAc cores. Unlike all other IAVs of aquatic birds, H16 IAVs showed efficient binding to Neu5Acα2-6Gal-containing receptors and bound poorly to Neu5Acα2-3Galß1-3-terminated (duck-type) receptors. Analysis of HA crystal structures and amino acid sequences suggested that the amino acid at position 222 is an important determinant of the receptor specificity of IAVs and that transmission of duck viruses to gulls and shorebirds is commonly accompanied by substitutions at this position.


Asunto(s)
Charadriiformes/virología , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/fisiología , Gripe Aviar/virología , Oligosacáridos/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Animales , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Modelos Moleculares , Oligosacáridos/química , Conformación Proteica , Receptores Virales/química
19.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925655

RESUMEN

Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Evasión Inmune , Ratones , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Unión Proteica , Conformación Proteica
20.
Cell Host Microbe ; 21(6): 742-753.e8, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28618270

RESUMEN

Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity than previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape.


Asunto(s)
Sitios de Unión/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Evasión Inmune , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Receptores Virales/genética , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Virales/genética , Secuencia de Bases , Sitios de Unión/inmunología , Cristalografía por Rayos X/instrumentación , Evolución Molecular , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Mutación , Conformación Proteica , Receptores Virales/inmunología , Análisis de Secuencia , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA