Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
2.
J Neurotrauma ; 38(15): 2084-2102, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33599152

RESUMEN

Complete spinal cord lesions interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. In particular, the interruption of connections with the neurons at lumbar segments after thoracic injuries impairs voluntary body control below the injury. The failure of spontaneous regrowth of transected axons across the lesion prevents the reconnection and reinnervation of the neuronal targets. At present, the only treatment in humans that has proven to promote some degree of locomotor recovery is physical therapy. The success of these strategies, however, depends greatly on the type of lesion and the level of preservation of neural tissue in the spinal cord after injury. That is the reason it is key to design strategies to promote axonal regrowth and neuronal reconnection. Here, we test the use of a developmental axon guidance molecule as a biological agent to promote axonal regrowth, axonal reconnection, and recovery of locomotor activity after spinal cord injury (SCI). This molecule, netrin-1, guides the growth of the corticospinal tract (CST) during the development of the central nervous system. To assess the potential of this molecule, we used a model of complete spinal cord transection in rats, at thoracic level 10-11. We show that in situ delivery of netrin-1 at the epicenter of the lesion: (1) promotes regrowth of CST through the lesion and prevents CST dieback, (2) promotes synaptic reconnection of regenerated motor and sensory axons, and (3) preserves the polymerization of the neurofilaments in the sciatic nerve axons. These anatomical findings correlate with a significant recovery of locomotor function. Our work identifies netrin-1 as a biological agent with the capacity to promote the functional repair and recovery of locomotor function after SCI. These findings support the use of netrin-1 as a therapeutic intervention to be tested in humans.


Asunto(s)
Locomoción/fisiología , Netrina-1/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inyecciones Espinales , Masculino , Tractos Piramidales , Ratas , Ratas Endogámicas WKY , Proteínas Recombinantes , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas
3.
Artículo en Inglés | MEDLINE | ID: mdl-26347615

RESUMEN

Orientation selectivity is ubiquitous in the primary visual cortex (V1) of mammals. In cats and monkeys, V1 displays spatially ordered maps of orientation preference. Instead, in mice, squirrels, and rats, orientation selective neurons in V1 are not spatially organized, giving rise to a seemingly random pattern usually referred to as a salt-and-pepper layout. The fact that such different organizations can sharpen orientation tuning leads to question the structural role of the intracortical connections; specifically the influence of plasticity and the generation of functional connectivity. In this work, we analyze the effect of plasticity processes on orientation selectivity for both scenarios. We study a computational model of layer 2/3 and a reduced one-dimensional model of orientation selective neurons, both in the balanced state. We analyze two plasticity mechanisms. The first one involves spike-timing dependent plasticity (STDP), while the second one considers the reconnection of the interactions according to the preferred orientations of the neurons. We find that under certain conditions STDP can indeed improve selectivity but it works in a somehow unexpected way, that is, effectively decreasing the modulated part of the intracortical connectivity as compared to the non-modulated part of it. For the reconnection mechanism we find that increasing functional connectivity leads, in fact, to a decrease in orientation selectivity if the network is in a stable balanced state. Both counterintuitive results are a consequence of the dynamics of the balanced state. We also find that selectivity can increase due to a reconnection process if the resulting connections give rise to an unstable balanced state. We compare these findings with recent experimental results.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Orientación , Corteza Visual/citología , Potenciales de Acción/fisiología , Animales , Red Nerviosa/fisiología , Factores de Tiempo , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA