Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410226, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032161

RESUMEN

The rising energy demand driven by human activity has posed pressing challenges in embracing renewable energy, necessitating advances in energy storage technologies to maximize their utilization efficiency. Recent studies in aqueous organic redox flow batteries focused primarily on the development of organic negative electrolytes, while the progress in organic positive electrolytes remains constrained by limitations in their redox potentials and effective electron concentrations. Herein, we report a spatially twisted chlorinated spirobifluorene ammonium salts (CSFAs), created through an unexpected green chlorination-protection pathway during the initial cycling in flow battery, utilizing chloride ions from counterions in aqueous solution. The chlorinated, nonplanar spiral structure of CFSAs possesses a one-step four-electron transfer electrochemical property and offers exceptional resistance to nucleophilic attacks, exhibiting an unprecedented redox potential as high as 1.05 V (vs. SHE). A full redox flow battery based on CFSA-Cl (chloride ions as the counter ions) with 1.4 M electron concentration achieved an average coulombic efficiency exceeding 99.4% and a capacity utilization reaching 95% of the four-electron capacity for a stable cycling over 250 cycles (~22 days). The present work exemplifies the use of side reactions to develop new redox species, which can be extended to create more structurally versatile energy storage materials.

2.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998315

RESUMEN

Vanadium redox flow batteries (VRFBs) are of considerable importance in large-scale energy storage systems due to their high efficiency, long cycle life and easy scalability. In this work, chemical vapor deposition (CVD) grown carbon nanotubes (CNTs)-modified electrodes and Nafion 117 membrane are utilised for formulating a vanadium redox flow battery (VRFB). In a CVD chamber, the growth of CNTs is carried out on an acid-treated graphite felt surface. Cyclic voltammetry of CNT-modified electrode and acid-treated electrode revealed that CNTs presence improve the reaction kinetics of V3+/V2+ and VO2+/VO2+ redox pairs. Battery performance is recorded for analysing, the effect of modified electrodes, varying electrolyte flow rates, varying current densities and effect of removing the current collector plates. CNTs presence enhance the battery performance and offered 96.30% of Coulombic efficiency, 79.33% of voltage efficiency and 76.39% of energy efficiency. In comparison with pristine electrodes, a battery consisting CNTs grown electrodes shows a 14% and 15% increase in voltage efficiency and energy efficiency, respectively. Battery configured without current collector plates performs better as compared to with current collector plates which is possibly due to decrease in battery resistance.

3.
Small ; : e2400496, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949033

RESUMEN

Vanadium redox flow battery (VRFB) is a type of energy storage device known for its large-scale capacity, long-term durability, and high-level safety. It serves as an effective solution to address the instability and intermittency of renewable energy sources. Carbon-based materials are widely used as VRFB electrodes due to cost-effectiveness and well-stability. However, pristine electrodes need proper modification to overcome original poor hydrophilicity and fewer reaction active sites. Adjusting the carbon structure is recognized as a viable method to boost the electrochemical activity of electrodes. This review delves into the advancements in research related to ordered and disordered carbon structure electrodes including the adjusting methods, structural characteristics, and catalytic properties. Ordered carbon structures are categorized into nanoscale and macroscale orderliness based on size, leading to improved conductivity and overall performance of the electrode. Disordered carbon structures encompass methods such as doping atoms, grafting functional groups, and creating engineered holes to enhance active sites and hydrophilicity. Based on the current research findings on carbon electrode structures, this work puts forth some promising prospects for future feasibility.

4.
ACS Appl Mater Interfaces ; 16(28): 36373-36379, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979971

RESUMEN

Given the importance of energy storage and its hybridization with renewable technologies for the energy transition, the development of redox flow batteries (RFB) is receiving particular attention. Among the various emerging technologies, aqueous organic redox flow batteries (AORFBs) are of particular interest, as the objectives in terms of durability, cost, and safety can be achieved thanks to the possibilities offered by molecular engineering. While anthraquinones have been widely explored as negolytes, few works report the use of naphthoquinones. This work aims to exploit an innovative in situ and cost-effective method for the one-pot synthesis of water-soluble naphthoquinones for application as a negolyte in redox flow batteries. As exemplified with alizarin, the energy of the naphthoquinone synthetic reaction in fuel cell mode can be recovered and the electrolyte solution used directly in redox flow batteries without purification. A 0.3 M naphthoquinone solution paired with 0.6 M ferrocyanide demonstrated good stability compared with other naphthoquinones, with a capacity fade rate of 0.017%/cycle (0.84%/day) over 320 cycles. Additionally, the system exhibited one of the highest energy efficiencies (82%) and a power density of 80-105 mW cm-2 at 50% SOC. These first results are promising for further exploration of new water-soluble naphthoquinones efficiently synthesized from hydroxyanthraquinones for application in AORFBs.

5.
ACS Nano ; 18(29): 18852-18869, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38993077

RESUMEN

Vanadium redox flow battery (VRFB) has garnered significant attention due to its potential for facilitating the cost-effective utilization of renewable energy and large-scale power storage. However, the limited electrochemical activity of the electrode in vanadium redox reactions poses a challenge in achieving a high-performance VRFB. Consequently, there is a pressing need to assess advancements in electrodes to inspire innovative approaches for enhancing electrode structure and composition. This work categorizes three-dimensional (3D) electrodes derived from materials such as foam, biomass, and electrospun fibers. By employing a flexible electrode design and compositional functionalization, high-speed mass transfer channels and abundant active sites for vanadium redox reactions can be created. Furthermore, the incorporation of 3D electrocatalysts into the electrodes is discussed, including metal-based, carbon-based, and composite materials. The strong interaction and ordered arrangement of these nanocomposites have an influence on the uniformity and stability of the surface charge distribution, thereby enhancing the electrochemical performance of the composite electrodes. Finally, the challenges and perspectives of VRFB are explored through advancements in 3D electrodes, 3D electrocatalysts, and mechanisms. It is hoped that this review will inspire the development of methodology and concept of 3D electrodes in VRFB, so as to promote the future development of scientific energy storage and conversion technology.

6.
Heliyon ; 10(13): e33561, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035514

RESUMEN

All-vanadium redox flow batteries (VRFB) have the advantages of high safety and long life, and have broad application prospects in the field of large-scale power energy storage. Low energy density is the main factor restricting its development. In this study, the carbon felt used as the electrode was pretreated in various ways to improve the performance of the vanadium redox flow battery. The pretreatment conditions of carbon felt were compared to the performance of carbon felt after treatment at different temperatures and different times. The properties of the pretreated carbon felt were investigated and their effect on cell performance was tested.Next, by introducing a noble metal catalyst into the carbon felt, the characteristics of the carbon felt were studied and the effect on the performance of the vanadium redox flow battery was investigated. It was found that Carbon felt thermal-treated at 500 °C for 2 h showed the best characteristics and had the longest charge/discharge time and the lowest resistance. The results also show that Carbon felt with catalyst introduced without PTFE(Polytetrafluoroethylene) binder showed larger BET(Brunauer-Emmett-Teller) surface area and electrical conductivity compared to PTFE mixed, and cell performance was also excellent.

7.
Nanotechnology ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079542

RESUMEN

Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards "beyond Li-ion technologies". In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost-effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy "beyond Li-ion" technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable 'post-Li' candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy 'beyond Li' storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these 'post-Li' technologies is discussed.

8.
ACS Appl Mater Interfaces ; 16(25): 32189-32197, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870428

RESUMEN

Owing to the advantages of low cost, high safety, and a desirable cycling lifetime, vanadium redox flow batteries (VRFBs) have attracted great attention in the large-scale energy storage field. However, graphite felts (GFs), widely used as electrode materials, usually possess an inferior catalytic activity for the redox reaction of vanadium ions, largely limiting the energy efficiency and rate performance of VRFBs. Here, an in situ growth of amorphous MnO2 on graphite felt (AMO@GF) was designed for application in VRFBs via mild and rapid etching engineering (5 min). After the etching process, the graphite felt fibers showed a porous and defective surface, contributing to abundant active sites toward the redox reaction. In addition, formed amorphous MnO2 can also serve as a powerful catalyst to facilitate the redox couples of VO2+/VO2+ based on density functional theoretical (DFT) calculations. As a result, the VRFB using AMO@GF displayed an elevated energy efficiency and superior stability after 2400 cycles at 200 mA cm-2, and the maximum current density can reach 300 mA cm-2. Such a high-efficiency and convenient design strategy for the electrode material will drive the further development and industrial application of VRFBs and other flow battery systems.

9.
Angew Chem Int Ed Engl ; : e202409006, 2024 Jun 19.
Artículo en Alemán | MEDLINE | ID: mdl-38896505

RESUMEN

Fluoroalkyl-grafted polyoxometalate nanoclusters are used as supramolecular additives to precisely modify the ionic domains of Nafion, which can increase the proton conductivity and selectivity simultaneously. The resulting hybrid membranes show significantly enhanced power density in fuel cells and improved energy efficiency in vanadium flow batteries.

10.
Angew Chem Int Ed Engl ; : e202407372, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895749

RESUMEN

Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well-developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017 % per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity.

11.
Angew Chem Int Ed Engl ; : e202407906, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842475

RESUMEN

Redox flow batteries (RFBs) with high energy densities are essential for efficient and sustainable long-term energy storage on a grid scale. To advance the development of nonaqueous RFBs with high energy densities, a new organic RFB system employing a molecularly engineered tetrathiafulvalene derivative ((PEG3/PerF)-TTF) as a high energy density catholyte was developed. A synergistic approach to the molecular design of tetrathiafulvalene (TTF) was applied, with the incorporation of polyethylene glycol (PEG) chains, which enhance its solubility in organic carbonate electrolytes, and a perfluoro (PerF) group to increase its redox potential. When paired with a lithium metal anode, the two-electron-active (PEG3/PerF)-TTF catholyte produced a cell voltage of 3.56 V for the first redox process and 3.92 V for the second redox process. In cyclic voltammetry and flow cell tests, the redox chemistry exhibited excellent cycling stability. The Li|(PEG3/PerF)-TTF batteries, with concentrations of 0.1 M and 0.5 M, demonstrated capacity retention rates of ~94 % (99.87 % per cycle, 97.52 % per day) and 90 % (99.93 % per cycle, 99.16 % per day), and the average Coulombic efficiencies of 99.38 % and 98.35 %, respectively. The flow cell achieved a high power density of 129 mW/cm2. Furthermore, owing to the high redox potential and solubility of (PEG3/PerF)-TTF, the flow cell attained a high operational energy density of 72 Wh/L (100 Wh/L theoretical). A 0.75 M flow cell exhibited an even higher operational energy density of 96 Wh/L (150 Wh/L theoretical).

12.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727361

RESUMEN

Electrodes are one of the key components that influence the performance of all-vanadium redox flow batteries (VRFBs). A porous graphite felt with modified fiber surfaces that can provide a high specific activation surface is preferred as the electrode of a VRFB. In this study, a simple binder-free approach is developed for preparing stable carbon nanotube modified graphite felt electrodes (CNT-GFs). Heat-treated graphite felt electrodes (H-GFs) are dip-coated using CNT homogeneous solution. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results conclude that CNT-GFs have less resistance, better reaction currents, and reversibility as compared to H-GF. Cell performances showed that CNT-GFs significantly improve the performance of a VRFB, especially for the CNT-GF served in the positive side of the VRFB. CNT presence increases the electrochemical properties of the graphite electrode; as a result, reaction kinetics for both VO2+/VO2+ and V3+/V2+ are improved. Positive CNT-GF (P-CNT-GF) configured VRFB exhibits voltage efficiency, coulombic efficiency, and energy efficiency of 85%, 97%, and 82%, respectively, at the operating current density of 100 mA cm-2. At high current density of 200 mA cm-2, the VRFB with P-CNT-GF shows 73%, 98%, and 72% of the voltage, coulombic, and energy efficiencies, respectively. The energy efficiency of the CNT-GF is 6% higher when compared with that of B-H-GF. The VRFB with CNT-GF can provide stable performance for 300 cycles at 200 mA cm-2.

13.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38727394

RESUMEN

Iron redox flow batteries (IRFBs) are cost-efficient RFBs that have the potential to develop low-cost grid energy storage. Electrode kinetics are pivotal in defining the cycle life and energy efficiency of the battery. In this study, graphite felt (GF) is heat-treated at 400, 500 and 600 °C, and its physicochemical and electrochemical properties are studied using XPS, FESEM, Raman and cyclic voltammetry. Surface morphology and structural changes suggest that GF heat-treated at 500 °C for 6 h exhibits acceptable thermal stability while accessing the benefits of heat treatment. Specific capacitance was calculated for assessing the wettability and electrochemical properties of pristine and treated electrodes. The 600 °C GF has the highest specific capacitance of 34.8 Fg-1 at 100 mV s-1, but the 500 °C GF showed the best battery performance. The good battery performance of the 500 °C GF is attributed to the presence of oxygen functionalities and the absence of thermal degradation during heat treatment. The battery consisting of 500 °C GF electrodes offered the highest voltage efficiency of ~74%, Coulombic efficiency of ~94%, and energy efficiency of ~70% at 20 mA cm-2. Energy efficiency increased by 7% in a battery consisting of heat-treated GF in comparison to pristine GF. The battery is capable of operating for 100 charge-discharge cycles with an average energy efficiency of ~ 67% for over 100 cycles.

14.
ChemSusChem ; : e202400550, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772010

RESUMEN

Non-aqueous organic redox flow batteries (RFB) utilizing verdazyl radicals are increasingly explored as energy storage technology. Verdazyl cations in RFBs with acidic aqueous electrolytes, however, have not been investigated yet. To advance the application in aqueous RFBs it is crucial to examine the interaction with the utilized membranes. Herein, the interactions between the 1,3,5-triphenylverdazyl cation and commercial Nafion 211 and self-casted polybenzimidazole (PBI) membranes are systematically investigated to improve the performance in RFBs. The impact of polymer backbones is studied by using mPBI and OPBI as well as different pre-treatments with KOH and H3PO4. Nafion 211 shows substantial absorption of the 1,3,5-triphenylverdazylium cation resulting in loss of conductivity. In contrast, mPBI and OPBI are chemically stable against the verdazylium cation without noticeable absorption. Pre-treatment with KOH leads to a significant increase in ionic conductivity as well as low absorption and permeation of the verdazylium cation. Symmetrical RFB cell tests on lab-scale highlight the beneficial impact of PBI membranes in terms of capacity retention and I-V curves over Nafion 211. With only 2 % d-1 capacity fading 1,3,5-triphenylverdazyl cations in acidic electrolytes with low-cost PBI based membranes exhibit a higher cycling stability compared to state-of-the-art batteries using verdazyl derivatives in non-aqueous electrolytes.

15.
Adv Mater ; 36(28): e2402090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776138

RESUMEN

Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.

16.
ChemSusChem ; : e202400705, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818626

RESUMEN

The vanadium redox flow battery (VRFB) holds promise for large-scale energy storage applications, despite its lower energy and power densities compared to advanced secondary batteries available today. Carbon materials are considered suitable catalyst electrodes for improving many aspects of the VRFB. However, pristine graphite structures in carbon materials are catalytically inert and require modification to activate their catalytic activity. Among the various strategies developed so far, O-functionalization and chemical doping of carbon materials are considered some of the most promising pathways to regulate their electronic structures. Building on the catalytic mechanisms involved in the VRFB, this concise review discusses recent advancements in the O-functionalization and chemical doping of carbon materials. Furthermore, it explores how these materials can be tailored and highlights future directions for developing more promising VRFBs to guide future research.

17.
Small ; : e2310845, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593367

RESUMEN

Given that the ion-exchange membrane takes up more than 30% of redox flow battery (RFB) cost, considerable cost reduction is anticipated with the membrane-free design. However, eliminating the membrane/separator would expose the membrane-free RFBs to a higher risk of short-circuits, and the dendrite growth may aggravate this issue. The current strategy based on expanding distances between electrodes is proposed to address short-circuit issues. Nevertheless, this approach would decrease the energy efficiency (EE) and could not restrain dendrite growth fundamentally. Herein, an inexpensive and electron-insulating boron nitride nanosheets (BNNSs)-Nylon hybrid interlayer (BN/Nylon) is developed for general membrane-free RFBs to achieve "near-zero distance" contact between electrodes. And the Lewis acid sites (B atoms) in BNNS can interact with the Lewis base anions in electrolytes, enabling a reduced Pb2+concentration gradient. Additionally, the ultrahigh thermal conductivity and mechanical strength of BNNSs promote the uniform plating/stripping process of Pb and PbO2. Compared with conventional soluble lead RFBs, introducing BN/Nylon interlayers boosts EE by ≈38.2% at 25 mA cm-2, and extends the cycle life to 100 cycles. This innovative strategy premieres the application of the BN/Nylon interlayer concept, offering a novel perspective for the development of general membrane-free RFBs.

18.
Sci Rep ; 14(1): 9576, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670981

RESUMEN

Renewable energy sources (RESs) have become integral components of power grids, yet their integration presents challenges such as system inertia losses and mismatches between load demand and generation capacity. These issues jeopardize grid stability. To address this, an effective approach is proposed, combining enhanced load frequency control (LFC) (i.e., fuzzy PID- T I λ D µ ) with controlled energy storage systems, specifically controlled redox flow batteries (CRFBs), to mitigate uncertainties arising from RES integration. The optimization of this strategy's parameters is achieved using the crayfish optimization algorithm (COA), known for its global optimization capabilities and balance between exploration and exploitation. Performance evaluation against conventional controllers (PID, FO-PID, FO-(PD-PI)) confirms the superiority of the proposed approach in LFC. Extensive testing under various load disturbances, high renewables penetration, and communication delays ensures its effectiveness in minimizing disruptions. Validation using a standardized IEEE 39-bus system further demonstrates its efficiency in power networks grappling with significant renewables penetration. In summary, this integrated strategy presents a robust solution for modern power systems adapting to increasing renewable energy utilization.

19.
Chemistry ; : e202400573, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660913

RESUMEN

Organic dyes hold promise as inexpensive electrochemically-active building blocks for new renewable energy technologies such as redox-flow batteries and dye-sensitised solar cells, especially if they display high oxidation and/or low reduction potentials in cheap, non-flammable solvents such as water or protic ionic liquids. Systematic computational and experimental characterisation of a representative selection of acidic and basic dyes in buffered aqueous solutions and propylammonium formate confirm that quinoid-type mechanisms impart electrochemical reversibility for the majority of systems investigated, including quinones, fused tricyclic heteroaromatics, indigo carmine and some aromatic nitrogenous species. Conversely, systems that generate longlived radical intermediates - arylmethanes, hydroquinones at high pH, azocyclic systems - tend to display irreversible electrochemistry, likely undergoing ring-opening, dimerisation and/or disproportionation reactions.

20.
Sci Technol Adv Mater ; 25(1): 2327274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529018

RESUMEN

Vanadium redox flow batteries (VRFBs) have received significant attention for use in large-scale energy storage systems (ESSs) because of their long cycle life, flexible capacity, power design, and safety. However, the poor electrochemical activity of the conventionally used carbon felt electrode results in low energy efficiency of the VRFBs and consequently impedes their commercialization. In this study, a carbon felt (CF) electrode with numerous nanopores and robust oxygen-containing functional groups at its edge sites is designed to improve the electrochemical activity of a carbon felt electrode. To achieve this, Ni metal nanoparticles were initially precipitated on the surface of the CF electrode, followed by etching of the precipitated Ni nanoparticles on the CF electrode using sulfuric acid. The resulting CF electrode had a specific surface area eight times larger than that of the pristine CF electrode. In addition, the oxygen-containing functional groups anchored at the graphite edge sites of the nanopores can act as robust electrocatalysts for VO2+/VO2+ and V2+/V3+ redox reactions. Consequently, the VRFB cell with the resulting carbon felt electrode can deliver a high energy efficiency of 86.2% at the current density of 60 mA cm-2, which is 20% higher than that of the VRFB cell with the conventionally heat-treated CF electrode. Furthermore, the VRFB cell with the resultant carbon felt electrodes showed stable cycling performance with no considerable energy efficiency loss over 200 charge-discharge cycles. In addition, even at a high current density of 160 mA cm-2 , the developed carbon felt electrode can achieve an energy efficiency of 70.1%.


This work reveals the importance of the robust graphite edge-site oxygen functional group and the holey structure of the ET-CF electrode, emphasizing that high VRFB efficiency can be achieved by engineering both the structure and surface properties of the carbon felt electrode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA