Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.871
Filtrar
1.
Front Oncol ; 14: 1397647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947885

RESUMEN

Background: Hepatoblastoma (HB) is the most common pediatric hepatic malignancy. Despite the progress in HB treatment, investigating HB pathomechanisms to optimize stratification and therapies remains a focal point to improve the outcome for high-risk patients. Methods: Here, we pointed to explore the impact of these mechanisms in HB. An observational study was performed on liver samples from a cohort of 17 patients with a diagnosis of HB and two normal liver samples. The in vitro experiments were executed on the Huh6 human HB cell line treated with the FAK inhibitor TAE226. Results: Our results highlight a significant up-regulation of mRNA and protein expression of FAK in livers from HB with respect to normal livers. The increased protein expression of total and Tyr397 phosphorylated FAK (pTyr397FAK) was significantly correlated with the expression of some epigenetic regulators of histone H3 methylation and acetylation. Of note, the expression of pTyr397FAK, N-methyltransferase enzyme (EZH2) and tri-methylation of the H3K27 residue correlated with tumor size and alpha-fetoprotein (AFP) levels. Finally, TAE226 caused a significant reduction of pTyr397FAK, epigenetic regulators, AFP, EPCAM, OCT4, and SOX2, in association with anti-proliferative and pro-apoptotic effects on HB cells. Conclusion: Our results suggest a role of FAK in HB that requires further investigations mainly focused on the exploration of its effective diagnostic and therapeutic translatability.

2.
Front Plant Sci ; 15: 1383645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978516

RESUMEN

Bitter pit is a disorder affecting the appearance of apples. Susceptibility is genetically controlled by both the cultivar and rootstock, with both environmental and horticultural factors affecting its severity and proportional incidence. Symptoms appear more frequently at the calyx end of the fruit and consist of circular necrotic spots, which take on a "corky" appearance visible through the peel. Bitter pit may develop before harvest, or after harvest, reducing the proportions of marketable fruit. In this review, current knowledge of the factors associated with the occurrence of bitter pit in apples is summarized and discussed along with their interactions with Ca uptake and distribution to fruit. This disorder has been previously linked with localized Ca deficiencies in fruit during its development. However, these relationships are not always clear. Even with over a century of research, the precise mechanisms involved in its development are still not fully understood. Additional factors also contribute to bitter pit development, like imbalances of mineral nutrients, low concentration of auxins, high concentration of gibberellins, changes in xylem functionality, or physiological responses to abiotic stress. Bitter pit remains a complex disorder with multiple factors contributing to its development including changes at whole plant and cellular scales. Apple growers must carefully navigate these complex interactions between genetics, environment, and management decisions to minimize bitter pit in susceptible cultivars. Accordingly, management of plant nutrition, fruit crop load, and tree vigor still stands as the most important contribution to reducing bitter pit development. Even so, there will be situations where the occurrence of bitter pit will be inevitable due to cultivar and/or abiotic stress conditions.

3.
J Reprod Immunol ; 165: 104293, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38986231

RESUMEN

OBJECTIVE: To utilize vast genetic data to reveal the interplay between 41 systemic inflammatory factors and endometriosis. DESIGN: Bidirectional Mendelian randomization study. MAINS OUTCOME MEASURES: This study obtained believable genetic instrumental variables for systemic inflammatory factors. The effect of systemic inflammatory factors on different endometriosis phenotypes, and the effect of endometriosis on the concentrations of systemic inflammatory factors were investigated. RESULTS: In this mendelian randomization study, we found 20 causal relationships involving 18 systemic inflammatory factors and it was shown that Monocyte chemotactic protein-1, Macrophage inflammatory protein-1a, Granulocyte colony-stimulating factor, Macrophage migration inhibitory factor, Interleukin-4, Interleukin-5, Interleukin-8, Interleukin-9, Interleukin-12p70, Interleukin-16, and Interleukin-17 may be the upstream causes of endometriosis (P<0.05). Additionally, if the definition of exposure in the mendelian randomization was endometriosis, it could suggestively cause an increase in Eotaxin, cutaneous T-cell attracting chemokine, and Interferon gamma-induced protein 10 levels, and a decrease in growth-regulated oncogene-alpha, Interleukin-2 receptor, alpha subunit, platelet-derived growth factor BB, and Interleukin-18 (P<0.05). Reverse causality was not observed between a single systemic inflammatory factor and endometriosis. CONCLUSIONS: Our findings indicate that several systemic inflammatory factors may act as the initiator at the onset of endometriosis. Additionally, several other inflammatory factors are far more probable to involved downstream during disease development.

4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 467-475, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970521

RESUMEN

Red blood cells (RBCs) are the primary mediators of oxygen transport in the human body, and their function is mainly achieved through conformational changes of hemoglobin (Hb). Hb is a tetramer composed of four subunits, with HbA being the predominant Hb in healthy adults, existing in two forms: tense state (T state) and relaxed state (R state). Endogenous regulators of Hb conformation include 2,3-diphosphoglyceric acid, carbon dioxide, protons, and chloride ions, while exogenous regulators include inositol hexaphosphate, inositol tripyrophosphate, benzabate, urea derivative L35, and vanillin, each with different mechanisms of action. The application of Hb conformational regulators provides new insights into the study of hypoxia oxygen supply issues and the treatment of sickle cell disease.


Asunto(s)
Hemoglobinas , Oxígeno , Conformación Proteica , Humanos , Oxígeno/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/química , Transporte Biológico , Eritrocitos/metabolismo , Ácido Fítico/metabolismo , Ácido Fítico/farmacología , 2,3-Difosfoglicerato/metabolismo
5.
Int J Ophthalmol ; 17(7): 1344-1362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026906

RESUMEN

Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.

6.
Methods Mol Biol ; 2827: 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985259

RESUMEN

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Asunto(s)
Células Vegetales , Técnicas de Cultivo de Tejidos , Técnicas de Cultivo de Célula/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Fitomejoramiento/métodos , Células Vegetales/metabolismo , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-39017913

RESUMEN

A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.

8.
Immunity ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39043184

RESUMEN

The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.

9.
Chin Med ; 19(1): 102, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049014

RESUMEN

Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.

10.
Mol Inform ; : e202400032, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979651

RESUMEN

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.0 web application, which allows predicting DIGEP and potential drug targets by structural formula of drug-like compounds. It is based on the combined use of structure-activity relationships (SARs) and network analysis. SAR models were created using PASS (Prediction of Activity Spectra for Substances) technology for data from the Comparative Toxicogenomics Database (CTD), the Connectivity Map (CMap) for the prediction of DIGEP, and PubChem and ChEMBL for the prediction of molecular mechanisms of action (MoA). Using only the structural formula of a compound, the user can obtain information on potential gene expression changes in several cell lines and drug targets, which are potential master regulators responsible for the observed DIGEP. The mean accuracy of prediction calculated by leave-one-out cross validation was 86.5 % for 13377 genes and 94.8 % for 2932 proteins (CTD data), and it was 97.9 % for 2170 MoAs. SAR models (mean accuracy-87.5 %) were also created for CMap data given on MCF7, PC3, and HL60 cell lines with different threshold values for the logarithm of fold changes: 0.5, 0.7, 1, 1.5, and 2. Additionally, the data on pathways (KEGG, Reactome), biological processes of Gene Ontology, and diseases (DisGeNet) enriched by the predicted genes, together with the estimation of target-master regulators based on OmniPath data, is also provided. DIGEP-Pred 2.0 web application is freely available at https://www.way2drug.com/digep-pred.

11.
Plants (Basel) ; 13(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999573

RESUMEN

The endangered plant species Adenophora liliifolia faces threats to its survival in the wild, necessitating the development of effective micropropagation techniques for potential reintroduction efforts. This study demonstrates that Adenophora liliifolia effectively reproduces on MS synthetic medium with diverse plant growth regulators (PGR) and natural extracts, facilitating swift micropropagation for potential future reintroduction endeavors. It highlights the substantial impact of PGR composition and natural extracts on the growth and development of A. liliifolia. The ideal growth medium for A. liliifolia was determined to be ½ MS with specific treatments. Additionally, incorporating silver nitrate (AgNO3) at 5 mg L-1 into the medium led to enhanced root formation and shoot length, albeit excessive concentrations adversely affected root development. Varying concentrations of NAA significantly affected different plant growth parameters, with the 0.1 mg L-1 treatment yielding comparable plant height to the control. Moreover, 50 mL L-1 of coconut water bolstered root formation, while 200 mL L-1 increased shoot formation during in vitro propagation. However, elevated doses of coconut water (CW) impeded root development but stimulated shoot growth. Experiments measuring chlorophyll a + b and carotenoid content indicated higher concentrations in the control group than differing levels of applied coconut water. Optimizing pH levels from 6.8-7 to 7.8-8.0 notably enhanced plant height and root formation, with significant carotenoid accumulation observed at pH 6.8-7. Soil samples from A. liliifolia's natural habitat exhibited a pH of 6.65. Ultimately, the refined in vitro propagation protocol effectively propagated A. liliifolia, representing a pioneering effort and setting the stage for future restoration initiatives and conservation endeavors.

12.
Microb Cell Fact ; 23(1): 202, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026365

RESUMEN

BACKGROUND: Microbial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways. RESULTS: In this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis. CONCLUSION: A silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.


Asunto(s)
Antraquinonas , Antibacterianos , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/biosíntesis , Antraquinonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Metabolismo Secundario/genética , Anguciciclinas y Anguciclinonas
13.
Int Immunopharmacol ; 139: 112691, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029230

RESUMEN

BACKGROUND: A newly identified type of cell death due to intracellular copper accumulation is known as cuproptosis and RNA methylation is a post-transcriptional modification mechanism, both of which perform vital roles in the immune microenvironment of colorectal cancer (CRC), but the link between the two needs more research. METHODS: TCGA database provided RNA-seq data and details clinically of CRC samples. Cuproptosis-related RNA methylation regulators (CRRMRs) were identified by correlation analysis. We screened 6 CRRMRs for prognostic model construction by employing LASSO-Cox regression analysis and calculated risk scores by CRRMRs (CuMS). GSE39582 and GSE38832 cohort were used as external validation sets. This research concentrated on the connection between the prognostic model and somatic mutation, anti-cancer drug sensitivity, immune infiltration, immune checkpoint expression. In addition, we investigated the differential expression of YTHDC2 in epithelial cell subpopulations by single-cell analysis with GSE166555, calculated cuproptosis scores and performed pathway enrichment. In vitro experiments were performed to explore the consequences of knockdown of YTHDC2 on CRC cell proliferation and migration, as well as changes in CRC cell viability in response to elesclomol after knockdown of YTHDC2. In vivo experiments, we constructed the cell line-derived xenograft model to further validate the results of the in vitro experiments. RESULTS: The prognosis of CRC can be predicted by CuMS, which GSE39582 and GSE38832 confirmed. Two CuMS groups showed different tumor mutation burden (TMB) and immune infiltration. CuMS was connected to emerging immune checkpoints CD47 and PVR, therefore, it can be clinically complementary to TMB and microsatellite instability (MSI) status. In single-cell analysis, a subpopulation of epithelial cells with high YTHDC2 expression had a high cuproptosis score. In vitro experiments, knocking down YTHDC2 promoted cell proliferation and migration in CRC, and weaken the inhibitory effect of elesclomol and elesclomol-Cu on cell viability, which in vivo experiments validated. CONCLUSION: We developed a prognostic model constructed by 6 CRRMRs to assess overall survival and immune microenvironment of CRC patients. YTHDC2 might regulate cuproptosis in multiple ways.

14.
Aging (Albany NY) ; 162024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39028290

RESUMEN

BACKGROUND: The aim of this study was to investigate the correlation between m6A methylation regulators and cell infiltration characteristics in tumor immune microenvironment (TIME), so as to help understand the immune mechanism of early-stage lung adenocarcinoma (LUAD). METHODS: The expression and consensus cluster analyses of m6A methylation regulators in early-stage LUAD were performed. The clinicopathological features, immune cell infiltration, survival and functional enrichment in different subtypes were analyzed. We also constructed a prognostic model. Clinical tissue samples were used to validate the expression of model genes through real-time polymerase chain reaction (RT-PCR). In addition, cell scratch assay and Transwell assay were also performed. RESULTS: Expression of m6A methylation regulators was abnormal in early-stage LUAD. According to the consensus clustering of m6A methylation regulators, patients with early-stage LUAD were divided into two subtypes. Two subtypes showed different infiltration levels of immune cell and survival time. A prognostic model consisting of HNRNPC, IGF2BP1 and IGF2BP3 could be used to predict the survival of early-stage LUAD. RT-PCR results showed that HNRNPC, IGF2BP1 and IGF2BP3 were significantly up-regulated in early-stage LUAD tissues. The results of cell scratch assay and Transwell assay showed that overexpression of HNRNPC promotes the migration and invasion of NCI-H1299 cells, while knockdown HNRNPC inhibits the migration and invasion of NCI-H1299 cells. CONCLUSIONS: This work reveals that m6A methylation regulators may be potential biomarkers for prognosis in patients with early-stage LUAD. Our prognostic model may be of great value in predicting the prognosis of early-stage LUAD.

15.
Front Microbiol ; 15: 1415365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989030

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.

16.
Discov Oncol ; 15(1): 286, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014265

RESUMEN

BACKGROUND: Chromatin regulators (CRs) are capable of causing epigenetic alterations, which are significant features of cancer. However, the function of CRs in controlling Clear Cell Renal Cell Carcinoma (ccRCC) is not well understood. This research aims to discover a CRs prognostic signature in ccRCC and to elucidate the roles of CRs-related genes in tumor microenvironment (TME). METHODS: Expression profiles and relevant clinical annotations were retrieved from the Cancer Genome Atlas (TCGA) and UCSC Xena platform for progression-free survival (PFS) data. The R package "limma" was used to identify differentially expressed CRs. A predictive model based on five CRs was developed using LASSO-Cox analysis. The model's predictive power and applicability were validated using K-M curves, ROC curves, nomograms, comparisons with other models, stratified survival analyses, and validation with the ICGC cohort. GO and GSEA analyses were performed to investigate mechanisms differentiating low and high riskScore groups. Immunogenicity was assessed using Tumor Mutational Burden (TMB), immune cell infiltrations were inferred, and immunotherapy was evaluated using immunophenogram analysis and the expression patterns of human leukocyte antigen (HLA) and checkpoint genes. Differentially expressed CRs (DECRs) between low and high riskScore groups were identified using log2|FC|> 1 and FDR < 0.05. AURKB, one of the high-risk DECRs and a component of our prognostic model, was selected for further analysis. RESULTS: We constructed a 5 CRs signature, which demonstrated a strong capacity to predict survival and greater applicability in ccRCC. Elevated immunogenicity and immune infiltration in the high riskScore group were associated with poor prognosis. Immunotherapy was more effective in the high riskScore group, and certain chemotherapy medications, including cisplatin, docetaxel, bleomycin, and axitinib, had lower IC50 values. Our research shows that AURKB is critical for the immunogenicity and immune infiltration of the high riskScore group. CONCLUSION: Our study produced a reliable prognostic prediction model using only 5 CRs. We found that AURKB promotes immunogenicity and immune infiltration. This research provides crucial support for the development of prognostic biomarkers and treatment strategies for ccRCC.

17.
Methods Mol Biol ; 2842: 79-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012591

RESUMEN

To achieve exquisite control over the epigenome, we need a better predictive understanding of how transcription factors, chromatin regulators, and their individual domain's function, both as modular parts and as full proteins. Transcriptional effector domains are one class of protein domains that regulate transcription and chromatin. These effector domains either repress or activate gene expression by interacting with chromatin-modifying enzymes, transcriptional cofactors, and/or general transcriptional machinery. Here, we discuss important design considerations for high-throughput investigations of effector domains, recent advances in discovering new domains in human cells and testing how domain function depends on amino acid sequence. For every effector domain, we would like to know the following: What role does the cell type, signaling state, and targeted context have on activation, silencing, and epigenetic memory? Large-scale measurements of transcriptional activities can help systematically answer these questions and identify general rules for how all these parameters affect effector domain activities. Last, we discuss what steps need to be taken to turn a newly discovered effector domain into a robust, precise epigenome editor. With more carefully considered high-throughput investigations, soon we will have better predictive control over the epigenome.


Asunto(s)
Epigénesis Genética , Humanos , Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Cromatina/genética , Cromatina/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Dominios Proteicos , Epigenómica/métodos
18.
Curr Drug Deliv ; 21(10): 1300-1319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034715

RESUMEN

With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.


Asunto(s)
Productos Biológicos , Factor 2 Relacionado con NF-E2 , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
19.
Talanta ; 279: 126577, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032457

RESUMEN

The first magnetic ligand-based electrochemical assay aimed at the determination of BRD4 was developed and validated. BRD4 is an epigenetic regulator of great interest in oncology in relation to its overexpression observed in the pathogenesis of several cancer diseases. BRD4 also represents a major target for the development of innovative treatments aimed at protein inhibition or degradation. Despite the relevance of BRD4 both for diagnostics and therapeutic purposes, current methodologies for its determination are limited to commercial ELISA kits. We present a novel magnetic ligand-based assay for the electrochemical determination of BRD4. The developed assay is based on the use of a small synthetic fragment of the natural protein ligand for BRD4 as receptor, thus exploiting the intrinsic biological protein-protein recognition mechanism. In addition, the assay features the use of magnetic beads as immobilization platforms and peroxidase-conjugated monoclonal anti-BRD4 antibody for the generation of the electrochemical signal. The ligand-based assay shows outstanding performance in terms of rapidity, with results achievable in less than 20 min, no matrix effect when applied to human plasma or cell lysate samples, and excellent specificity. The proposed method exhibits a limit of detection of 2.66 nM and a response range tunable as a function of the amount of immobilized receptor. The developed ligand-based assay was successfully applied to the accurate determination of BRD4 in untreated cell lysates, as proven by the ELISA reference method. The good performance of the proposed bioassay for determination of BRD4 showed potential application of this strategy in convenient point-of-care testing.

20.
BioTech (Basel) ; 13(3)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39051340

RESUMEN

Aseptic seedlings of different ages derived from surface-sterilized mature seeds were applied as an explant source. Various explants such as 7- and 21-day-old hypocotyl fragments, 42-day-old nodal stem segments, and transverse nodal segments of stem, as well as leaf petioles, were cultured on the agar-solidified Murashige and Skoog (MS) basal medium supplemented with 0.1 mg/L IAA, 5 mg/L AgNO3 and different types and concentrations of cytokinin (1 mg/L zeatin, 0.25 mg/L thidiazuron (TDZ), and 5 mg/L 6-benzylaminopurine (6-BAP)). Consequently, it was found that 7- and 21-day-old hypocotyl fragments, as well as nodal stem segments obtained from adult aseptic seedlings, are characterized by a high explant viability and callus formation capacity with a frequency of 79.7-100%. However, the success of in vitro somatic shoot organogenesis was significantly determined not only by the culture medium composition and explant type but also depending on its age, as well as on the size and explant preparation in cases of hypocotyl and age-matched nodal stem fragments, respectively. Multiple somatic shoot organogenesis (5.7 regenerants per explant) with a frequency of 67.5% was achieved during 3 subcultures of juvenile hypocotyl-derived callus tissue on MS culture medium containing 0.25 mg/L TDZ as cytokinin source. Castor bean regenerants were excised from the callus and successfully rooted on ½ MS basal medium without exogenous auxin (81%). In vitro plantlets with well-developed roots were adapted to ex vitro conditions with a frequency of 90%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA