Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Eur J Pharmacol ; 978: 176759, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901527

RESUMEN

Excessive or inappropriate fear responses can lead to anxiety-related disorders, such as post-traumatic stress disorder (PTSD). Studies have shown that microglial activation occurs after fear conditioning and that microglial inhibition impacts fear memory. However, the role of microglia in fear memory recall remains unclear. In this study, we investigated the activated profiles of microglia after the recall of remote-cued fear memory and the role of activated microglia in the extinction of remote-cued fear in adult male C57BL/6 mice. The results revealed that the expression of the microglia marker Iba1 increased in the medial prefrontal cortex (mPFC) at 10 min and 1 h following remote-cued fear recall, which was accompanied by amoeboid morphology. Inhibiting microglial activation through PLX3397 treatment before remote fear recall did not affect recall, reconsolidation, or regular extinction but facilitated recall-extinction and mitigated spontaneous recovery. Moreover, our results demonstrated reduced co-expression of Iba1 and postsynaptic density protein 95 (PSD95) in the mPFC, along with decreases in the p-PI3K/PI3K ratio, p-Akt/Akt ratio, and KLF4 expression after PLX3397 treatment. Our results suggest that microglial activation after remote fear recall impedes fear extinction through the pruning of synapses in the mPFC, accompanied by alterations in the expression of the PI3K/AKT/KLF4 pathway. This finding can help elucidate the mechanism involved in remote fear extinction, contributing to the theoretical foundation for the intervention and treatment of PTSD.


Asunto(s)
Extinción Psicológica , Miedo , Factor 4 Similar a Kruppel , Recuerdo Mental , Ratones Endogámicos C57BL , Microglía , Corteza Prefrontal , Animales , Miedo/fisiología , Miedo/psicología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Masculino , Microglía/metabolismo , Extinción Psicológica/fisiología , Recuerdo Mental/fisiología , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Estimulación Acústica/efectos adversos , Transducción de Señal
2.
Cell Rep ; 43(3): 113943, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483907

RESUMEN

The maturation of engrams from recent to remote time points involves the recruitment of CA1 neurons projecting to the anterior cingulate cortex (CA1→ACC). Modifications of G-protein-coupled receptor pathways in CA1 astrocytes affect recent and remote recall in seemingly contradictory ways. To address this inconsistency, we manipulated these pathways in astrocytes during memory acquisition and tagged c-Fos-positive engram cells and CA1→ACC cells during recent and remote recall. The behavioral results were coupled with changes in the recruitment of CA1→ACC projection cells to the engram: Gq pathway activation in astrocytes caused enhancement of recent recall alone and was accompanied by earlier recruitment of CA1→ACC projecting cells to the engram. In contrast, Gi pathway activation in astrocytes resulted in the impairment of only remote recall, and CA1→ACC projecting cells were not recruited during remote memory. Finally, we provide a simple working model, hypothesizing that Gq and Gi pathway activation affect memory differently, by modulating the same mechanism: CA1→ACC projection.


Asunto(s)
Astrocitos , Memoria a Largo Plazo , Memoria a Largo Plazo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Giro del Cíngulo/fisiología , Hipocampo/fisiología
3.
Behav Brain Res ; 465: 114960, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38494129

RESUMEN

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Asunto(s)
Miedo , Trastornos por Estrés Postraumático , Animales , Ratones , Quinasa de la Caseína II/metabolismo , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Corteza Prefrontal/metabolismo , Trastornos por Estrés Postraumático/metabolismo
4.
Neurosci Biobehav Rev ; 159: 105574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331127

RESUMEN

The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.


Asunto(s)
Encéfalo , Neuronas , Humanos , Encéfalo/fisiología , Neuronas/fisiología
5.
Neuropsychologia ; 196: 108818, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355037

RESUMEN

How well do we know our city? It turns out, much more poorly than we might imagine. We used declarative memory and eye-tracking techniques to examine people's ability to detect modifications to real-world landmarks and scenes in Toronto locales with which they have had extensive experience. Participants were poor at identifying which scenes contained altered landmarks, whether the modification was to the landmarks' relative size, internal features, or relation to surrounding context. To determine whether an indirect measure would prove more sensitive, we tracked eye movements during viewing. Changes in overall visual exploration, but not to specific regions of change, were related to participants' explicit endorsement of scenes as modified. These results support the contention that very familiar landmarks are represented at a global or gist level, but not local or fine-grained, level. These findings offer a unified view of memory for gist across verbal and spatial domains, and across recent and remote memory, with implications for hippocampal-neocortical interactions.


Asunto(s)
Movimientos Oculares , Hipocampo , Humanos
6.
Neuropsychologia ; 194: 108787, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184190

RESUMEN

INTRODUCTION: Cognitive Map Theory predicts that the hippocampus (HPC) plays a specialized, time-invariant role in supporting allocentric spatial memory, while Standard Consolidation Theory makes the competing prediction that the HPC plays a time-limited role, with more remote memories gaining independence of HPC function. These theories, however, are largely informed by the results of laboratory-based tests that are unlikely to simulate the demands of representing real-world environments in humans. Validation of these theories is further limited by an overall focus on spatial memory of newly encountered environments and on individuals with extensive lesions to the HPC and to surrounding medial temporal lobe (MTL) regions. The current study incorporates naturalistic tests of spatial memory based on recently and remotely encountered environments navigated by individuals with lesions to the HPC/MTL or that are limited to the HPC's major output, the fornix. METHODS: Four participants with bilateral HPC/MTL and/or fornix lesions drew sketch maps of recently and remotely experienced neighbourhoods and houses. Tests of the appearance, distances, and routes between landmarks from the same real-world environments were also administered. Performance on the tasks was compared to that of control participants closely matched in terms of exposure to the same neighbourhoods and home environments as well as to actual maps. RESULTS: The performance of individuals with fornix/MTL lesions was found to be largely comparable to that of controls on objective tests of spatial memory, other than one case who was impaired on remote and recent conditions for several tasks. The nature of deficits in recent and remote spatial memory were further revealed on house floorplan drawings, which contained spatial distortions, room/structure transpositions, and omissions, and on neighbourhood sketch maps, which were intact in terms of overall layout but sparse in details such as landmarks. CONCLUSION: Lab-based tests of spatial memory of newly learned environments are unlikely to fully capture patterns of spared and impaired representations of real-world environments (e.g., peripheral features, configurations). Naturalistic tasks, including generative drawing tasks, indicate that contrary to Cognitive Map Theory, neither HPC nor MTL are critical for allocentric gross representations of large-scale environments. Conversely, the HPC appears critical for representing detailed spatial information of local naturalistic environments and environmental objects regardless of the age of the memory, contrary to Standard Consolidation Theory.


Asunto(s)
Hipocampo , Memoria Espacial , Humanos , Hipocampo/patología , Lóbulo Temporal , Trastornos de la Memoria , Memoria a Largo Plazo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36951391

RESUMEN

The original Memory Impairment Screen by Telephone (MIST) was designed to identify individuals with dementia but was relatively ineffective for identification of less severe impairment observed in mild cognitive impairment (MCI). We expanded the original MIST to create a modified instrument (mMIST) with greater sensitivity to less severe memory impairment. Older men and women with subjective cognitive decline were assessed by phone with the mMIST and subsequently classified independently with MCI or non-pathological cognitive decline. Participants with MCI produced lower scores on the mMIST than did participants without MCI, 10.8 ± 2.7 vs 13.3 ± 1.3, t = 5.68, p < 0.001, and performance on the mMIST predicted performances on the California Verbal Learning Test (CVLT), Verbal Paired Associate Learning Test (VPAL), Montreal Cognitive Assessment (MoCA) total score, and MoCA memory index score, p < 0.001. Receiver operating characteristic (ROC) analyses identified the optimal cut score on the mMIST to distinguish participants with and without MCI with Sensitivity = 73.1%, Specificity = 79.1%, and AUC = 0.79. Predictive values for distinguishing the amnestic form of MCI (aMCI) from non-amnestic MCI were Sensitivity = 81.8%, Specificity = 30%, and AUC = 0.82. These findings indicate that the mMIST is a valid screening instrument for identifying MCI. It can be administered remotely at low cost and low participant burden. Also, the mMIST has potential utility for remote cross-sectional and longitudinal evaluation in research and clinical contexts. Further investigation is indicated to corroborate its utility for assessment of aging patients and research participants.


Asunto(s)
Disfunción Cognitiva , Masculino , Humanos , Femenino , Anciano , Sensibilidad y Especificidad , Estudios Transversales , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Teléfono
8.
Synapse ; 78(1): e22282, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37794768

RESUMEN

Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.


Asunto(s)
Eritropoyetina , Consolidación de la Memoria , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Eritropoyetina/farmacología , Eritropoyetina/metabolismo , Receptores de Eritropoyetina/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Memoria a Largo Plazo
9.
Geroscience ; 46(2): 2223-2237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37910304

RESUMEN

Engagement in cognitive activity in adulthood is one of the factors that enable successful cognitive aging, both in humans and rodents. However, some studies emphasize that the beneficial effect on cognition of such an activity may reflect carry over from one test situation to another, including memory for procedural aspects of the behavioral tasks, and thus question whether this effect can be limited to the trained cognitive domain or whether it can be transferred to an untrained ones. In the current study, we assessed whether adulthood intermittent working memory training has beneficial effect on long-term memory of aged rats using two very different test situations. To this aim, rats trained in a delayed non-matching to position task in operant box at 3 and 15 months of age were tested in a place learning task in water maze when they were 24 months. The two tasks differ with regard to the cognitive domain but also in their spatial ability requirement and the nature of the reinforcer used. During the memory tests, accuracy of the platform search indicated age-related impairment only in the aged-untrained group. Thus, intermittent training during adult life in a task involving working memory protects aged animals from the deleterious effects of aging on spatial reference memory. This result highlights the long-term beneficial effects of training on a working memory task on an untrained cognitive domain.


Asunto(s)
Entrenamiento Cognitivo , Memoria a Corto Plazo , Humanos , Ratas , Animales , Anciano , Memoria a Largo Plazo , Memoria Espacial , Trastornos de la Memoria/prevención & control
10.
Alzheimers Dement ; 20(1): 494-510, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37695022

RESUMEN

INTRODUCTION: Anesthesia often exacerbates memory recall difficulties in individuals with Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS: We used in vivo Ca2+ imaging, viral-based circuit tracing, and chemogenetic approaches to investigate anesthesia-induced remote memory impairment in mouse models of presymptomatic AD. RESULTS: Our study identified pyramidal neuron hyperactivity in the anterior cingulate cortex (ACC) as a significant contributor to anesthesia-induced remote memory impairment. This ACC hyperactivation arises from the disinhibition of local inhibitory circuits and increased excitatory inputs from the hippocampal CA1 region. Inhibiting hyperactivity in the CA1-ACC circuit improved memory recall after anesthesia. Moreover, anesthesia led to increased tau phosphorylation in the hippocampus, and inhibiting this hyperphosphorylation prevented ACC hyperactivity and subsequent memory impairment. DISCUSSION: Hippocampal-cortical hyperactivity plays a role in anesthesia-induced remote memory impairment. Targeting tau hyperphosphorylation shows promise as a therapeutic strategy to mitigate anesthesia-induced neural network dysfunction and retrograde amnesia in AD.


Asunto(s)
Enfermedad de Alzheimer , Anestesia , Ratones , Animales , Hipocampo , Memoria/fisiología , Memoria a Largo Plazo , Trastornos de la Memoria/etiología
11.
Neurobiol Aging ; 131: 39-51, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572526

RESUMEN

Age-related abnormalities in phosphodiesterase 11A (PDE11A), which degrades 3',5'-cAMP/cGMP and is enriched in the ventral hippocampus (VHIPP), drive age-related cognitive decline (ARCD) of social memories. Age-related PDE11A4 ectopically accumulates within the membrane compartment and in filamentous structures termed ghost axons. Previous studies show that expressing an isolated PDE11A4-GAF-B binding domain disrupts homodimerization and reverses aging-like PDE11A4 accumulations in vitro. Here, we show that in vivo lentiviral expression of the isolated PDE11A4-GAFB domain in hippocampal CA1 of aged mice reverses age-related PDE11A4 accumulations and ARCD of social transmission of food preference memory (STFP). It also improves 7-day remote long-term memory for social odor recognition without affecting non-social odor recognition. In vitro studies show that disrupting homodimerization does not alter the catalytic activity of PDE11A4 but may reverse age-related decreases in cGMP by relocating PDE11A4 from a cGMP-rich to a cAMP-rich pool independently of other intramolecular relocation signals (PDE11A4-pS162). Altogether, these data suggest that a biologic designed to disrupt PDE11A4 homodimerization may hold therapeutic potential for age-related PDE11A4 proteinopathies.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas , Productos Biológicos , Animales , Ratones , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Memoria a Largo Plazo , Reconocimiento en Psicología , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Productos Biológicos/metabolismo
12.
Curr Biol ; 33(18): 3942-3950.e3, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37586373

RESUMEN

Remote memories play an important role in how we perceive the world, and they are rooted throughout the brain in "engrams": ensembles of cells that are formed during acquisition. Upon their reactivation, a specific memory can be recalled.1,2,3,4,5,6,7,8,9,10,11,12 Many studies have focused on the ensembles in CA1 of the hippocampus and the anterior cingulate cortex (ACC). However, the evolution of these components during systems' consolidation has not yet been comprehensively addressed.13,14,15,16 By applying transgenic approaches for ensemble identification, CLARITY, retro-AAV, and pseudo-rabies virus for circuit mapping, and chemogenetics for functional interrogation, we addressed the dynamics of recent and remote CA1 ensembles. We expected both stability (as they represent the same memory) and maturation (over time). Indeed, we found that CA1 engrams remain stable between recent and remote recalls, and the inhibition of engrams for recent recall during remote recall functionally impairs memory. We also found that new cells in the remote recall engram in the CA1 are not added randomly during maturation but differ according to their connections. First, we show in two ways that the anterograde CA1 → ACC engram cell projection grows larger. Finally, in the retrograde projections, the ACC reduces input to CA1 engram cells, whereas input from the entorhinal cortex and paraventricular nucleus of the thalamus increases. Our results shine fresh light on systems' consolidation by providing a deeper understanding of engram stability and maturation in the transition from recent to remote memory.


Asunto(s)
Hipocampo , Memoria a Largo Plazo , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Corteza Entorrinal , Giro del Cíngulo/fisiología
13.
Trends Cogn Sci ; 27(4): 404-416, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813591

RESUMEN

Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and human research. What is becoming apparent is twofold: although remote fear memories are more resistant to change compared with recent ones, they can nevertheless be attenuated when interventions are targeted toward the period of memory malleability instigated by memory recall, the reconsolidation window. We describe the physiological mechanisms underlying remote reconsolidation-updating approaches and highlight how they can be enhanced through interventions promoting synaptic plasticity. By capitalizing on an intrinsically relevant phase of memory, reconsolidation-updating harbors the potential to permanently alter remote fear memories.


Asunto(s)
Memoria a Largo Plazo , Memoria , Animales , Humanos , Memoria/fisiología , Miedo/fisiología , Plasticidad Neuronal , Extinción Psicológica/fisiología
14.
Front Behav Neurosci ; 17: 1295969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38515786

RESUMEN

Here, we propose a model of remote memory (BaconREM), which is an extension of a previously published Bayesian model of context fear learning (BACON) that accounts for many aspects of recently learned context fear. BaconREM simulates most known phenomenology of remote context fear as studied in rodents and makes new predictions. In particular, it predicts the well-known observation that fear that was conditioned to a recently encoded context becomes hippocampus-independent and shows much-enhanced generalization ("hyper-generalization") when systems consolidation occurs (i.e., when memory becomes remote). However, the model also predicts that there should be circumstances under which the generalizability of remote fear may not increase or even decrease. It also predicts the established finding that a "reminder" exposure to a feared context can abolish hyper-generalization while at the same time making remote fear again hippocampus-dependent. This observation has in the past been taken to suggest that reminders facilitate access to detail memory that remains permanently in the hippocampus even after systems consolidation is complete. However, the present model simulates this result even though it totally moves all the contextual memory that it retains to the neo-cortex when context fear becomes remote.

15.
J Neurosci ; 42(42): 7947-7956, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261267

RESUMEN

Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.


Asunto(s)
Hipocampo , Recuerdo Mental , Animales , Femenino , Macaca mulatta , Hipocampo/fisiología , Recuerdo Mental/fisiología , Giro del Cíngulo/fisiología , Encéfalo
16.
Front Behav Neurosci ; 16: 1011955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311859

RESUMEN

Fear memory retrieval is relevant to psychiatric disorders such as post-traumatic stress disorder (PTSD). One of the hallmark symptoms of PTSD is the repeated retrieval and re-experiencing of the initial fear memory even long after the traumatic event has occurred. Women are nearly twice as likely to develop PTSD following a trauma than men, thus sex differences in the retrieval of fear memories is highly relevant for understanding the development and maintenance of PTSD. In the current study, we aimed to examine sex differences in the retrieval and extinction of either recent or remote fear memories. To do so, we conditioned male and female rats either 1 day (recent) or 28 days (remote) prior to testing retrieval and extinction. While there was no effect of sex or retention interval on initial retrieval, we found that remotely conditioned females exhibited higher rates of freezing than remotely conditioned males in later retrieval/extinction sessions, suggesting a sex difference in the retrieval and/or extinction of remote, but not recent, fear memories. Overall, these results are the first to demonstrate a sex difference in the extinction of remote fear memory, and this may contribute to the differential expression of fear-related disorders like PTSD in men and women.

17.
Front Neurol ; 13: 855332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463127

RESUMEN

Studies of epilepsy patients provide insight into the neuroscience of human memory. Patients with remote memory deficits may learn new information but have difficulty recalling events from years past. The processes underlying remote memory impairment are unclear and likely result from the interaction of multiple factors, including hippocampal dysfunction. The hippocampus likely has a continued role in remote semantic and episodic memory storage over time, and patients with mesial temporal lobe epilepsy (TLE) are at particular risk for deficits. Studies have focused on lateralization of remote memory, often with greater impairment in left TLE, which may relate to verbal task demands. Remote memory testing is restricted by methodological limitations. As a result, deficits have been difficult to measure. This review of remote memory focuses on evidence for its underlying neurobiology, theoretical implications for hippocampal function, and methodological difficulties that complicate testing in epilepsy patients.

18.
Neurosci Biobehav Rev ; 136: 104609, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278596

RESUMEN

Successful spatial cognition involves learning, consolidation, storage, and later retrieval of a spatial memory trace. The functional contributions of specific brain areas and their interactions during retrieval of past spatial events are unclear. This systematic review collects studies about allocentric remote spatial retrieval assessed at least two weeks post-acquisition in rodents. Results including non-invasive interventions, brain lesion and inactivation experiments, pharmacological treatments, chemical agent administration, and genetic manipulations revealed that there is a normal forgetting when time-periods are close to or exceed one month. Moreover, changes in the morphology and functionality of neocortical areas, hippocampus, and other subcortical structures, such as the thalamus, have been extensively observed as a result of spatial memory retrieval. In conclusion, apart from an increasingly neocortical recruitment in remote spatial retrieval, the hippocampus seems to participate in the retrieval of fine spatial details. These results help to better understand the timing of memory maintenance and normal forgetting, outlining the underlying brain areas implicated.


Asunto(s)
Neuroanatomía , Memoria Espacial , Animales , Hipocampo/fisiología , Humanos , Memoria a Largo Plazo/fisiología , Roedores , Memoria Espacial/fisiología
19.
Front Behav Neurosci ; 16: 751053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309682

RESUMEN

Dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) is considered to play an important role not only in reward-based learning but also in aversive learning. The contextual and auditory cued fear conditioning tests involve the processing of classical fear conditioning and evaluates aversive learning memory. It is possible to evaluate aversive learning memory in two different types of neural transmission circuits. In addition, when evaluating the role of dopaminergic neurotransmission via D1R, to avoid the effects in D1R-mediated neural circuitry alterations during development, it is important to examine using mice who D1R expression in the mature stage is suppressed. Herein, we investigated the role of dopaminergic neurotransmission via D1Rs in aversive memory formation in contextual and auditory cued fear conditioning tests using D1R knockdown (KD) mice, in which the expression of D1Rs could be conditionally and reversibly controlled with doxycycline (Dox) treatment. For aversive memory, we examined memory formation using recent memory 1 day after conditioning, and remote memory 4 weeks after conditioning. Furthermore, immunostaining of the brain tissues of D1RKD mice was performed after aversive footshock stimulation to investigate the distribution of activated c-Fos, an immediate-early gene, in the hippocampus (CA1, CA3, dentate gyrus), striatum, amygdala, and prefrontal cortex during aversive memory formation. After aversive footshock stimulation, immunoblotting was performed using hippocampal, striatal, and amygdalar samples from D1RKD mice to investigate the increase in the amount of c-Fos and phosphorylated SNAP-25 at Ser187 residue. When D1R expression was suppressed using Dox, behavioral experiments revealed impaired contextual fear learning in remote aversion memory following footshock stimulation. Furthermore, expression analysis showed a slight increase in the post-stimulation amount of c-Fos in the hippocampus and striatum, and a significant increase in the amount of phosphorylated SNAP-25 in the hippocampus, striatum, and prefrontal cortex before and after stimulation. These findings indicate that deficiency in D1R-mediated dopaminergic neurotransmission is an important factor in impairing contextual fear memory formation for remote memory.

20.
Int J Neuropsychopharmacol ; 25(6): 489-497, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35134947

RESUMEN

BACKGROUND: We previously showed that the infralimbic medial prefrontal cortex (IL-mPFC) plays an important role in recent and remote memory retrieval and extinction of conditioned odor aversion (COA) and contextual fear conditioning (CFC) in adult rats. Because the mPFC undergoes maturation during post-weaning, here, we aimed to explore (1) whether post-weanling rats can form recent and remote COA and CFC memory, and (2) the role of the IL-mPFC in mediating these processes. METHODS: To investigate the retrieval process, we transiently inactivated the IL-mPFC with lidocaine prior to the retrieval test at either recent or remote time points. To target the consolidation process, we applied the protein synthesis inhibitor after the retrieval at recent or remote time points. RESULTS: Our results show that the post-weanling animals were able to develop both recent and remote memory of both COA and CFC. IL-mPFC manipulations had no effect on retrieval or extinction of recent and remote COA memory, suggesting that the IL has no effect in COA at this developmental stage. In contrast, the IL-mPFC played a role in (1) the extinction of recent, but not remote, CFC memory, and (2) the retrieval of remote, but not recent, CFC memory. Moreover, remote, but not recent, CFC retrieval enhanced c-Fos protein expression in the IL-mPFC. CONCLUSIONS: Altogether, these results point to a differential role of the IL-mPFC in recent and remote CFC memory retrieval and extinction and further confirm the differences in the role of IL-mPFC in these processes in post-weanling and adult animals.


Asunto(s)
Extinción Psicológica , Miedo , Corteza Prefrontal , Animales , Memoria , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA