Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.407
Filtrar
1.
Yakugaku Zasshi ; 144(9): 857-863, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39218652

RESUMEN

Less than 10% of the candidate drug compounds are associated with male reproductive toxicity. Genetic and/or epigenetic information on sperm may be crucial for fetal development. Therefore, developmental toxicity, such as paternally transmitted birth defects, is possible if genetic abnormalities in the male germ line persist and accumulate in the sperm during spermatogenesis. First, this study provides an overview of chemical and male reproductive toxicity, which may lead to developmental toxicity from the perspective of male reproduction. Second, we demonstrate methods for evaluating male reproductive toxicity to anticipate male-mediated developmental toxicity. We developed a novel staining technique for evaluating sperm quality, as well as a noninvasive imaging analysis of male reproductive toxicity. The former is a mammalian male germ cell-specific staining method using reactive blue 2 dye (RB2), as previously confirmed in human sperm, and a method for detecting the early-stage DNA fragmentation in a single nucleus from mouse spermatozoa using single-cell pulsed-field gel electrophoresis. The latter is a new, ready-to-use, and compact magnetic resonance imaging (MRI) platform utilizing a high-field permanent magnet to evaluate male reproductive toxicity. The histopathological analysis supported the suitability of the MRI platform. The present study, for the first time, revealed a rapid, noninvasive evaluation of male reproductive toxicity in vivo using compact MRI. These novel toxicity assessments can help predict male-mediated developmental toxicity, contributing to accelerated drug discovery and drug repositioning.


Asunto(s)
Imagen por Resonancia Magnética , Reproducción , Espermatogénesis , Espermatozoides , Masculino , Animales , Espermatozoides/efectos de los fármacos , Humanos , Ratones , Reproducción/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Pruebas de Toxicidad/métodos , Fragmentación del ADN , Coloración y Etiquetado/métodos
2.
F1000Res ; 13: 260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220381

RESUMEN

Introduction: Poweromin X Ten (PXT) is a polyherbal formulation, traditionally used to enhance male sexual function. However, the safety and benefits of PXT have not been scientifically evaluated. Therefore, the present study investigated the toxicity and aphrodisiac potential of PXT in male rats and explored its principal mechanisms of action. Methods: Male Wistar rats were orally administered PXT (50 or 100 mg/kg) for 28 days, and sexual activity parameters, including latency and frequency of mounting and intromissions, were studied. The reproductive toxicity and spermatogenic potential were also examined. Furthermore, dopamine and serotonin levels in brain regions associated with sexual activity were assessed. Network analysis was used to identify the key bioactive compounds and their core targets involved in their beneficial actions. Results: Treatment with PXT improved sexual activity in male rats, as evidenced by reduced mounting and intromission latency and a significant increase in mount frequency. Moreover, PXT exhibited spermatogenic potential and did not induce reproductive toxicity. Notably, treatment with 50 mg/kg PXT elevated dopamine levels in median preoptic area and hypothalamus. Pathway analysis indicated that PXT primarily modulated the PI3K-Akt, calcium, and MAPK signalling pathways to enhance male sexual function. Network analysis identified macelignan, ß-estradiol, testosterone, and paniculatine as key bioactive components of PXT, which likely act through core targets, such as androgen receptor (AR), Mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), and vascular endothelial growth factor (VEGF) to facilitate the improvement of male sexual function. Conclusion: Study results suggest that PXT is a safer alternative with aphrodisiac and spermatogenic potential. These effects are partly attributed to the enhanced dopamine levels in the brain. Furthermore, this study provides insights into the specific signalling pathways and bioactive compounds that underlie the improvements in male sexual function associated with PXT.


Asunto(s)
Dopamina , Ratas Wistar , Conducta Sexual Animal , Animales , Masculino , Conducta Sexual Animal/efectos de los fármacos , Ratas , Dopamina/metabolismo , Farmacología en Red , Extractos Vegetales/farmacología , Serotonina/metabolismo , Afrodisíacos/farmacología
3.
Environ Sci Ecotechnol ; 22: 100471, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39220680

RESUMEN

Microplastics and phthalates are prevalent and emerging pollutants that pose a potential impact on human health. Previous studies suggest that both microplastics and phthalates can adversely affect the reproductive systems of humans and mammals. However, the combined impact of these pollutants on the female reproductive system remains unclear. Here we show the impacts of exposure to polystyrene microplastics (PS-MPs) and di-2-ethylhexyl phthalate (DEHP) on female Sprague-Dawley rats' reproductive systems. We find that co-exposure to PS-MPs and DEHP results in a marked increase in cystic and atretic follicles, oxidative stress, fibrosis, and dysregulation of serum sex hormone homeostasis in the ovaries of the rats. Proteomic analysis identified differentially expressed proteins that were predominantly enriched in signaling pathways related to fatty acid metabolism and tight junctions, regulated by transforming growth factor ß1 (TGF-ß1). We further confirm that co-exposure to DEHP and PS-MPs activates the TGF-ß1/Smad3 signaling pathway, and inhibiting this pathway alleviates oxidative stress, hormonal dysregulation, and ovarian fibrosis. These results indicate that exposure to the combination of microplastics and phthalates leads to a significant increase in atretic follicles and may increase the risk of polycystic ovary syndrome (PCOS). Our study provides new insights into the reproductive toxicity effects of microplastics and DEHP exposure on female mammals, highlighting the potential link between environmental pollutants and the occurrence of PCOS. These findings highlight the need for comprehensive assessments of the reproductive health risks posed by microplastic pollution to women and contribute to the scientific basis for evaluating such risks.

4.
Aquat Toxicol ; 275: 107072, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39222568

RESUMEN

6:2 Chlorinated polyfluorinated ether sulfonate, commonly known as F-53B, is widely used as a mist suppressant in various industries and is frequently detected in the environment. Despite its prevalent presence, the adverse effects of F-53B are not well understood and require future investigation. This study utilized zebrafish embryos and adults to examine the toxic effects of F-53B. Our findings revealed that F-53B impaired gill structure and increased erythrocyte numbers in adult zebrafish. Notably, F-53B demonstrated a higher sensitivity for inducing mortality (LC50 at 96 h) in adult zebrafish compared to embryos. Additionally, F-53B disrupted the expression of critical steroidogenic genes and hindered sex hormone production, which negatively affecting egg production. In conclusion, this study underscores the detrimental impact of F-53B on gill structure and reproductive toxicity in zebrafish, providing valuable insights into its overall toxicity.

5.
Ecotoxicol Environ Saf ; 284: 116878, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142116

RESUMEN

BACKGROUND: 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES: We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS: Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS: Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION: ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.

6.
Biochem Biophys Rep ; 39: 101801, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39175663

RESUMEN

Male reproductive toxicity as a result of arsenic exposure is linked with oxidative stress and excessive generation of reactive oxygen species (ROS). It leads to an imbalance between ROS production and antioxidant defense mechanisms ultimately resulting in male infertility. The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor that responds to cellular stressors controlling the oxidative state, mitochondrial dysfunction, inflammation, and proteostasis. This study aims to investigate the potential of Rosolic acid (ROA) to act as a novel Nrf2 activator by mitigating oxidative stress to combat arsenic-induced male reproductive toxicity. The protein and ligands were prepared in the BIOVIA Discovery Studio, followed by protein-ligand docking using auto dock vina integrated with the PyRx-Virtual Screening Tool. Then the ADME properties were analyzed using the SwissADME tool to get a clear idea about the physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug likeliness of ROA. It was followed by molecular dynamics simulation (MDS) studies using GROMACS. The 3D and 2D interaction maps revealed the interactions of Keap 1 with ROA. Keap1-ROA complex was found to have a binding energy of -7.8 kcal/mol. ROA showed 0 violations for Lipinski and 0 alerts each for PAINS and Brenk and a bioavailability score of 0.55. The BOILED-Egg representation showcases that ROA is predicted as passively crossing the blood-brain barrier (BBB). The MDS described 2FLU-ROA as a stable system. This work portrays that ROA can be a potent Nrf2 activator by exhibiting an inhibitory activity against the Keap1 protein and thus mitigating oxidative stress in arsenic-induced male reproductive toxicity.

7.
Sci Total Environ ; 951: 175532, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153614

RESUMEN

Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 µg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.

8.
Toxics ; 12(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39195655

RESUMEN

Micro/nanoplastics (MNPs), as emerging pollutants, have been detected in both the maternal and fetal sides of the placenta in pregnant women, and their reproductive toxicity has been demonstrated in in vivo and in vitro experimental models. The Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy has been innovatively devised to facilitate valid risk assessment, encompassing a comprehensive evaluation of reliability, correlation, outcome fitness, and integrity across four dimensions based on the included published evidence and our own findings. This study serves as an application case of TRAEC, with 40 items of research evidence on the toxicity of MNPs to the placenta, which were rigorously screened and incorporated into the final scoring system. The final score for this TRAEC case study is 5.63, suggesting a moderate-to-low risk of reproductive toxicity associated with MNPs in the placenta, which may potentially increase with decreasing particle size. It is essential to emphasize that the findings also report original data from assays indicating that exposure to high-dose groups (100 µg/mL, 200 µg/mL) of 50 nm and 200 nm polystyrene nanoplastics (PS-NPs) induces HTR8/SVneo cell cycle arrest and cell apoptosis, which lead to reproductive toxicity in the placenta by disrupting mitochondrial function. Overall, this study employed the TRAEC strategy to provide comprehensive insight into the potential reproductive health effects of ubiquitous MNPs.

9.
Reprod Toxicol ; : 108703, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214481

RESUMEN

The ICH S5(R3) guideline recommends that male rodents in a FEED study are treated for ≥2 weeks before mating, which has frequently been criticized as being too short for the detection of all effects on sperm maturation, mating behavior and male fertility. In a FEED study, males generally continue for ≥5 weeks after the start of cohabitation. This review determines how often a 2-week premating treatment period for males was used in FEED studies of novel drugs approved by the FDA in 2022 and 2023. The male premating treatment duration was specified for 44 drugs. Only 16% of these had a 2-week male premating treatment period. 52% of drugs had a 4-week period. No examples were found in the literature of drugs for which male-mediated reproductive toxicity could have been detected using a 4-week, but not a 2-week, premating treatment period. Repeat dose studies in 2 species, with a duration of treatment at least equivalent to that in patients, are generally completed before the FEED study is planned. Providing no effects on male reproductive organs are detected in the repeat dose studies, a 2-week premating treatment period appears sufficient for the detection of effects on male mating performance. If toxic effects on spermatogenesis are detected in the repeat dose studies, a male FEED study serves little regulatory purpose. Even in the absence of effects on mating performance and fertility in the FEED study, a drug-related disruption of spermatogenesis would likely be considered pertinent to the human.

10.
Regul Toxicol Pharmacol ; 152: 105682, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094967

RESUMEN

Regulatory guidance for global drug development relies on animal studies to evaluate safety risks for humans, including risk of reproductive toxicity. Weight-of-evidence approaches (WoE) are increasingly becoming acceptable to evaluate risk. A WoE for developmental risk of monoclonal antibodies (mAbs) was evaluated for its ability to retrospectively characterize risk and to determine the need for further in vivo testing based on the remaining uncertainty. Reproductive toxicity studies of 65 mAbs were reviewed and compared to the WoE. Developmental toxicities were absent in 52/65 (80%) mAbs. Lack of toxicity was correctly predicted in 29/52 (56%) cases. False positive and equivocal predictions were made in 9/52 (17%) and 14/52 (27%) cases. For 3/65 (5%) mAbs, the findings were equivocal. Of mAbs with developmental toxicity findings (10/65, 15%), the WoE correctly anticipated pharmacology based reproductive toxicity without any false negative predictions in 9/10 (90%) cases, and in the remaining case (1/10, 10%) an in vivo study was recommended due to equivocal WoE outcome. Therefore, this WoE approach could characterize presence and absence of developmental risk without animal studies. The current WoE could have reduced the need for developmental toxicity studies by 42% without loss of important patient information in the label.

11.
Reprod Toxicol ; 130: 108687, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173974

RESUMEN

Food-grade titanium dioxide E171 was administered in feed to Sprague Dawley rats in an extended one-generation reproductive toxicity (EOGRT) study (OECD Test 443). The dosed diet (0, 100, 300, or 1000 mg/kg body weight/day) started 10 weeks before mating and continued throughout the study. After weaning, pups were allocated to Cohorts 1 A/1B (to assess reproductive toxicity), 2 A/2B (to assess developmental neurotoxicity), and 3 (to assess developmental immunotoxicity); in addition, Cohort 1B was mated to produce an F2 generation and satellite F0 animals were evaluated for colonic aberrant crypt foci (ACF). In F0 animals, there were no systemic toxicity or reproductive effects, no treatment-related histopathological changes, and no ACF in the colon. Serum estradiol or testosterone concentrations were not changed in F0 or F1 animals. No pre-/postnatal developmental changes related to treatment were noted in F1 animals, and the reproductive performance of F1 Cohort 1B animals was unaffected. F2 pups showed no abnormalities in pre- or postnatal development (postnatal days 4-8). No treatment-related developmental neurotoxicity was observed in Cohorts 2 A/2B. Although no treatment-related immunotoxicity was observed in Cohort 3, the positive control did not induce the expected response; this segment of the study will be repeated. Analyses of blood and urine showed negligible systemic absorption of E171 from the gastrointestinal tract upon dietary ingestion. The no observed adverse effect level (NOAEL) for parental systemic toxicity, reproductive toxicity, offspring toxicity, and developmental neurotoxicity was considered 1000 mg/kg body weight/day. For developmental immunotoxicity, a NOAEL was not determined owing to insufficient T-cell-dependent antibody response in the positive control. Our study provides robust data on the reproductive toxicity and preneoplastic potential of E171.

12.
Environ Toxicol Chem ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092785

RESUMEN

Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes. Using zebrafish (Danio rerio) as a model species and benzo[a]pyrene as a model PAH, three linked quantitative relationships were developed: (1) plasma estrogen in adult females as a function of embryonic exposure, (2) plasma vitellogenin in adult females as a function of plasma estrogen, and (3) fecundity of adult females as a function of plasma vitellogenin. A fourth quantitative relationship was developed for early life mortality as a function of sensitivity to activation of the AHR2 in a standardized in vitro AHR transactivation assay to integrate toxic equivalence calculations that would allow prediction of effects of exposure to untested PAHs. The accuracy of the predictions from the resulting qAOP were evaluated using experimental data from zebrafish exposed as embryos to another PAH, benzo[k]fluoranthene. The qAOP developed in the present study demonstrates the potential of the AOP framework in enabling consideration of latent toxicities in quantitative ecological risk assessments and regulatory decision-making. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

13.
Biomedicines ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39200182

RESUMEN

BACKGROUND: Plastic-based products are ubiquitous due to their tremendous utility in our daily lives. Nanoplastic (NP) and microplastic (MP) pollution has become a severe threat to the planet and is a growing concern. It has been widely reported that polystyrene (PS) MPs are severely toxic to the male reproduction system, with effects including decreased sperm parameters, impaired spermatogenesis, and damaged testicular structures. However, the molecular mechanisms for impaired spermatogenesis remain poorly understood. METHODS: C57BL/6 male mice were treated with PS-NPs (80 nm) and PS-MPs (5 µm) by oral gavage every day for 60 days. A series of morphological analyses were completed to explore the influence of PS-NP and PS-MP exposure on the testes. Compared to other cell types in the seminiferous tubule, PS-NP and PS-MP exposure can lead to decreased spermatocytes. Then, more refined molecular typing was further performed based on gene expression profiles to better understand the common and specific molecular characteristics after exposure to PS-NPs and PS-MPs. RESULTS: There were 1794 common DEGs across the PS-NP groups at three different doses and 1433 common DEGs across the PS-MP groups at three different doses. GO and KEGG analyses of the common DEGs in the PS-NP and PS-MP groups were performed to enrich the common and specific functional progress and signaling pathways, including 349 co-enriched GO entries and 13 co-enriched pathways. Moreover, 348 GO entries and 33 pathways were specifically enriched in the PS-NP group, while 526 GO entries and 15 pathways were specifically enriched in the PS-MPs group. CONCLUSIONS: PS-NPs were predominantly involved in regulating retinoic acid metabolism, whereas PS-MPs primarily influenced pyruvate metabolism and thyroid hormone metabolism. Our results highlight the different molecular mechanisms of PS-NPs and PS-MPs in the impairment of spermatogenesis in male mammals for the first time, providing valuable insights into the precise mechanisms of PS-NPs and PS-MPs in male reproduction.

14.
Front Toxicol ; 6: 1333746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100893

RESUMEN

Titanium dioxide (TiO2), also known as E171, is commonly used as a white colorant in food, pharmaceuticals, cosmetics, and toothpaste. However, in May 2021, the European Food Safety Authority (EFSA) expert panel, in evaluating the safety of titanium dioxide (E171) as a food additive, concluded that a concern for genotoxicity could not be ruled out. This occurred several years after EFSA had previously considered titanium dioxide to be safe as a food additive. EFSA based this new interpretation on the results of genotoxicity tests of TiO2 nanomaterials. EFSA noted that available data are insufficient to define threshold doses/concentrations of TiO2 particles below which genotoxicity will not occur in tissues containing these particles. Here, it is argued that EFSA made a manifest error regarding the safety of titanium dioxide (E171) particles as a food additive for humans. First, the notion of particle size distribution of TiO2 particles is explained. Second, the changing opinions from the various EFSA evaluations in 2016, 2018, 2019 vs. 2021 are discussed. Third, the low toxicity of TiO2 particles is described in rats exposed by oral gavage and feeding studies in rats and mice. Fourth, the importance of low absorption rates from the gastrointestinal tract vs. circulation in rats and humans but not in mice is identified. Fifth, other international health scientists have weighed in on the EFSA (EFSA J, 2021, 19 (5), 6585) decision and generally disagreed with EFSA's opinion on the safety of E171 TiO2. A common theme voiced by the United Kingdom, Canada, Australia, and New Zealand agencies is that it is inappropriate to compare nanoparticle toxicity studies of dispersed/sonicated nanoparticles with the content of E171 TiO2 in foods because the test materials used in key studies considered by EFSA (EFSA J, 2021, 19 (5), 6585) are not representative of E171 TiO2 particles. Finally, a group of experts recently considered the genotoxicity of TiO2 and could not find support for a direct DNA damaging mechanism of TiO2 (nano and other forms). For these reasons, it is suggested that EFSA made a manifest error on the safety of E171 as a food additive.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39096378

RESUMEN

BACKGROUND: Rosemary (Rosmarinus officinalis) contains alkaloids, phenolic acids, saponins, tannins, diterpenes, flavonoids, and essential oils and has antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective, cardioprotective, and hepatoprotective effects. While rosemary is generally considered safe for consumption and topical application, allergic reactions and dermatitis have been reported in some individuals. This paper provides an in-depth review of the current studies on rosemary toxicity, shedding light on its potential adverse effects and underlying mechanisms. METHODS: Google Scholar, PubMed, Scopus, and Web of Science were used to perform extensive research from the inception of these databases until February 2024. RESULTS: The toxicological effects explored include affecting several organs such as the liver and kidney by causing atrophic and degenerative changes, increasing blood urea nitrogen (BUN), aspartate aminotransferase (AST), and reducing total serum protein levels. Rosemary may induce reproductive toxicity by decreasing spermatogenesis in the testes, testosterone, sperm density, and motility. It might also trigger genotoxicity and anomalies in fetuses by increasing cytoplasmic membrane shrinkage, the formation of apoptotic bodies, internucleosomal deoxyribonucleic acid (DNA) fragmentation, and DNA ladder formation. CONCLUSION: While rosemary is considered safe for food preservation, caution is warranted regarding chronic and high doses due to potential adverse effects on the kidneys, liver, reproductive system, and teratology. Additionally, it underscores the significance of considering drug interactions. The article also highlights the importance of considering toxicological data in realistic exposure situations and discusses the relevance of these findings for human health. Hence, further research is recommended to enhance our understanding of the toxicity profile associated with rosemary.

16.
BMC Pharmacol Toxicol ; 25(1): 46, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123263

RESUMEN

BACKGROUND: Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities. METHODS: Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD50) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively. RESULTS: EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol. CONCLUSION: Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.


Asunto(s)
Apoptosis , Quempferoles , Espermatozoides , Testículo , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Echis , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Quempferoles/farmacología , Quempferoles/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Venenos de Víboras/toxicidad
17.
Heliyon ; 10(15): e35331, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165990

RESUMEN

Reproductive toxicity is one of the major concerns in drug development. Thus, we have developed its screening system using Caenorhabditis elegans, which has a life cycle of three days and similar coding genes as humans. Antiviral nucleoside analogs used for acute infections are known to cause reproductive toxicity, contraindicated for pregnant women, and are used for comparing their reproductive toxicity in C. elegans and experimental animals. None of the drug treatments affected the number of offspring and the concentrations without toxicity to nematodes were consistent with no cytotoxicity or toxicity in experimental animals or humans. Favipiravir, ribavirin, molnupiravir (NHC), acyclovir, ganciclovir, zidovudine, and thalidomide significantly increased the incidence of arrested embryos but amenamevir, letermovir, and guanosine did not. RNA-dependent RNA polymerase (RdRp) inhibitors, in the order of favipiravir, ribavirin, and NHC increased the incidence of arrested embryos, possibly due to the specificity of favipiravir for RdRp and less cytotoxicity. RdRp inhibitors would impair RNA interference through RdRp expressed by telomerase reverse transcriptase during embryogenesis and cause embryo-fetal toxicity. The incidence of arrested embryos may be affected by differences in the substrate specificity of DNA polymerases and metabolism between C. elegans, animals, and humans. The concordance between the results of the screening system for reproductive toxicity of antivirals in C. elegans and those in experimental animals based on the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, reproductive toxicology confirms its appropriateness as a screening system for reproductive toxicity. Favipiravir and zidovudine were the least toxic to C. e legans among the antiviral drugs examined.

18.
Environ Pollut ; 359: 124531, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996995

RESUMEN

Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Compuestos de Bencidrilo , Barrera Hematotesticular , Ferroptosis , Fenoles , Proteínas de Unión al ARN , Masculino , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Fenoles/toxicidad , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Ratones , Compuestos de Bencidrilo/toxicidad , Transducción de Señal/efectos de los fármacos , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética
19.
Biofabrication ; 16(4)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38986466

RESUMEN

This study presents a biphasic approach to overcome the limitations of current testicular organoid (TO) cultures, including histological heterogeneity, germ cell loss and absence of spermatogenesis. Agarose microwells were utilized to create TOs from prepubertal C57BL/6 J testicular cells. First emphasis was on improving germ cell survival during the initial 2-week reorganization phase by comparingα-MEM + 10% knockout serum replacement (KSR) medium, known to support TO generation in mice, to three optimized media (1-3). Cell densities and culture dynamics were also tested to recreate histological resemblance to testes. After optimizing germ cell survival and cell organization, the effect of growth factors and immunomodulation through CD45+immune cell depletion or dexamethasone (DEX) supplementation were assessed for enhancing spermatogenesis during the subsequent differentiation phase. Testicular cells self-reorganized into organoids resembling the testicular anatomical unit, characterized by one tubule-like structure surrounded by interstitium. Media 1-3 proved superior for organoid growth during the reorganization phase, with TOs in medium 3 exhibiting germ cell numbers (7.4% ± 4.8%) comparable to controls (9.3% ± 5.3%). Additionally, 37% ± 30% demonstrated organized histology from 32 × 103cells under static conditions. Switching toα-MEM + 10% KSR during the differentiation phase increased formation efficiency to 85 ± 7%, along with elevated germ cell numbers, testosterone production (3.1 ± 0.9 ng ml-1) and generation ofγ-H2AX+spermatid-like cells (steps 8-11, 1.2% ± 2.2% of the total). Adding differentiation factors to theα-MEM increased spermatid-like cell numbers to 2.9% ± 5.9%, confirmed through positive staining for CREM, transition protein 1, and peanut agglutinin. Although, these remained diploid with irregular nuclear maturation. DEX supplementation had no additional effect, and immune cell depletion adversely impacted TO formation. The manipulability of TOs offers advantages in studying male infertility and exploring therapies, with scalability enabling high-throughput chemical screening and reducing animal usage in reproductive toxicity and drug discovery studies.


Asunto(s)
Supervivencia Celular , Ratones Endogámicos C57BL , Organoides , Espermatogénesis , Testículo , Testosterona , Masculino , Animales , Organoides/citología , Organoides/metabolismo , Organoides/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Testículo/metabolismo , Testosterona/farmacología , Espermatogénesis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratones , Diferenciación Celular/efectos de los fármacos , Células Germinativas/citología , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Dexametasona/farmacología
20.
Sci Total Environ ; 949: 174972, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053555

RESUMEN

Microplastics (MPs) pollution poses a global environmental challenge with significant concerns regarding its potential impact on human health. Toxicological investigations have revealed multi-system impairments caused by MPs in various organisms. However, the specific reproductive hazards in human contexts remain elusive, and understanding the transgenerational reproductive toxicity of MPs remains limited. This study delves into the reproductive toxicity resulting from lactational exposure to polystyrene MPs (PS-MPs) in female mice, extending the inquiry to assess the reproductive effects on their offspring bred by rigorous natural mating. The MPs dosage corresponds to the detected concentration in infant formula prepared using plastic bottles. By systematically evaluating the reproductive phenotypes of F0 female mice from birth to adulthood, we found that female mice exposed to PS-MPs exhibited delayed puberty, disturbed estrous cyclicity, diminished fertility, elevated testosterone, abnormal follicle development, disrupted ovarian steroidogenesis, and ovarian inflammation. Importantly, the observed inheritable reproductive toxicity manifested with gender specificity, showcasing more pronounced abnormalities in male offspring. Specifically, reproductive disorders did not manifest in female offspring; however, a significant decrease in sperm count and viability was observed in PS-MPs-exposed F1 males. Testicular transcriptomics analysis of F1 males significantly enriched pathways associated with reproductive system development and epigenetic modification, such as male germ cell proliferation, DNA methylation, and histone modification. In summary, real-life exposure to PS-MPs impaired the reproductive function of female mice and threateningly disrupted the spermatogenesis of their F1 male offspring, which raises serious concerns about inter- and trans-generational reproductive toxicities of MPs in mammals. These findings underscore the potential threats of MPs to human reproductive health, emphasizing the need for continued vigilance and research in this critical area.


Asunto(s)
Lactancia , Microplásticos , Reproducción , Animales , Femenino , Ratones , Microplásticos/toxicidad , Reproducción/efectos de los fármacos , Masculino , Exposición Materna/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA