Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Int J Ophthalmol ; 17(8): 1519-1530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156787

RESUMEN

Owing to the rapid development of modern computer technologies, artificial intelligence (AI) has emerged as an essential instrument for intelligent analysis across a range of fields. AI has been proven to be highly effective in ophthalmology, where it is frequently used for identifying, diagnosing, and typing retinal diseases. An increasing number of researchers have begun to comprehensively map patients' retinal diseases using AI, which has made individualized clinical prediction and treatment possible. These include prognostic improvement, risk prediction, progression assessment, and interventional therapies for retinal diseases. Researchers have used a range of input data methods to increase the accuracy and dependability of the results, including the use of tabular, textual, or image-based input data. They also combined the analyses of multiple types of input data. To give ophthalmologists access to precise, individualized, and high-quality treatment strategies that will further optimize treatment outcomes, this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases.

2.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120292

RESUMEN

Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.


Asunto(s)
Proteínas de la Matriz Extracelular , Empalme del ARN , Síndromes de Usher , Humanos , Proteínas de la Matriz Extracelular/genética , Síndromes de Usher/genética , Femenino , Masculino , Empalme del ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Exones/genética , Mutación/genética , Retinitis Pigmentosa/genética , Adulto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Intrones/genética , Persona de Mediana Edad
4.
Ophthalmic Genet ; : 1-6, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092760

RESUMEN

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.

5.
J Clin Med ; 13(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39200821

RESUMEN

Background: Retinitis pigmentosa (RP) is a group of hereditary retinal dystrophies characterized by progressive degeneration of photoreceptor cells, which results in debilitating visual impairment. This systematic review aims to evaluate the efficacy and safety of emerging treatment modalities for RP, including gene therapy, mesenchymal-cell-based approaches, and supplementary interventions. Methods: A comprehensive search of electronic databases was conducted to identify relevant studies published up to February 2024. Studies reporting outcomes of treatment interventions for RP, including randomized controlled trials, non-randomized studies, and case series, were included. Data extraction and synthesis were performed according to predefined criteria, focusing on assessing the quality of evidence and summarizing key findings. Results: The search yielded 13 studies meeting inclusion criteria, encompassing diverse treatment modalities and study designs. Gene therapy emerged as a promising therapeutic approach, with several studies reporting favorable outcomes regarding visual function preservation and disease stabilization. Mesenchymal-cell-based therapies also demonstrated potential benefits, although evidence remains limited and heterogeneous. Supplementary interventions, including nutritional supplements and neuroprotective agents, exhibited variable efficacy, with conflicting findings across studies. Conclusions: Despite the lack of definitive curative treatments, emerging therapeutic modalities promise to slow disease progression and preserve visual function in individuals with RP. However, substantial gaps in evidence and heterogeneity in study methodologies underscore the need for further research to elucidate optimal treatment strategies, refine patient selection criteria, and enhance long-term outcomes. This systematic review provides a comprehensive synthesis of current evidence and highlights directions for future research to advance the care and management of individuals with RP.

6.
Ophthalmic Res ; 67(1): 448-457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39079514

RESUMEN

INTRODUCTION: The purpose of this project was to explore the current standards of clinical care genetic testing and counseling for patients with inherited retinal diseases (IRDs) from the perspective of leading experts in selected European countries. Also, to gather opinions on current bottlenecks and future solutions to improve patient care. METHODS: On the initiative of the European Vision Institute, a survey questionnaire with 41 questions was designed and sent to experts in the field from ten European countries. Each participant was asked to answer with reference to the situation in their own country. RESULTS: Sixteen questionnaires were collected by November 2023. IRD genetic tests are performed in clinical care settings for 80% or more of tested patients in 9 countries, and the costs of genetic tests in clinical care are covered by the public health service to the extent of 90% or more in 8 countries. The median proportion of patients who are genetically tested, the median rate of genetically solved patients among those who are tested, and the median proportion of patients receiving counseling are 51-70%, 61-80%, and 61-80%, respectively. Improving the education of healthcare professionals who facilitate patient referrals to specialized centers, improving access of patients to more thorough genotyping, and increasing the number of available counselors were the most advocated solutions. CONCLUSION: There is a significant proportion of IRD patients who are not genetically tested, whose genetic testing is inconclusive, or who do not receive counseling. Educational programs, greater availability of state-of-the-art genotyping and genetic counselors could improve healthcare for IRD patients.


Asunto(s)
Pruebas Genéticas , Enfermedades de la Retina , Humanos , Pruebas Genéticas/métodos , Europa (Continente) , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Encuestas y Cuestionarios , Asesoramiento Genético
7.
Ophthalmol Sci ; 4(5): 100521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006804

RESUMEN

Purpose: Hyperglycemia is a major risk factor for early lesions of diabetic retinal disease (DRD). Updating the DRD staging system to incorporate relevant basic and cellular mechanisms pertinent to DRD is necessary to better address early disease, disease progression, the use of therapeutic interventions, and treatment effectiveness. Design: We sought to review preclinical and clinical evidence on basic and cellular mechanisms potentially pertinent to DRD that might eventually be relevant to update the DRD staging system. Participants: Not applicable. Methods: The Basic and Cellular Mechanisms Working Group (BCM-WG) of the Mary Tyler Moore Vision Initiative carefully and extensively reviewed available preclinical and clinical evidence through multiple iterations and classified these. Main Outcome Measures: Classification was made into evidence grids, level of supporting evidence, and anticipated future relevance to DRD. Results: A total of 40 identified targets based on pathophysiology and other parameters for DRD were grouped into concepts or evaluated as specific candidates. VEGFA, peroxisome proliferator-activated receptor-alpha related pathways, plasma kallikrein, and angiopoietin 2 had strong agreement as promising for use as biomarkers in diagnostic, monitoring, predictive, prognostic, and pharmacodynamic responses as well as for susceptibility/risk biomarkers that could underlie new assessments and eventually be considered within an updated DRD staging system or treatment, based on the evidence and need for research that would fit within a 2-year timeline. The BCM-WG found there was strong reason also to pursue the following important concepts regarding scientific research of DRD acknowledging their regulation by hyperglycemia: inflammatory/cytokines, oxidative signaling, vasoprotection, neuroprotection, mitophagy, and nutrients/microbiome. Conclusion: Promising targets that might eventually be considered within an updated DRD staging system or treatment were identified. Although the BCM-WG recognizes that at this stage little can be incorporated into a new DRD staging system, numerous potential targets and important concepts deserve continued support and research, as they may eventually serve as biomarkers and/or therapeutic targets with measurable benefits to patients with diabetes. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

8.
Surv Ophthalmol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986847

RESUMEN

Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.

9.
Front Ophthalmol (Lausanne) ; 4: 1415393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045093

RESUMEN

Purpose: Female carriers of X-linked inherited retinal diseases (IRDs) can show highly variable phenotypes and disease progression. Vascular reactivity, a potential disease biomarker, has not been investigated in female IRD carriers. In this study, functional optical coherence tomography angiography (OCT-A) was used to dynamically assess the retinal microvasculature of X-linked IRD carriers. Methods: Genetically confirmed female carriers of IRDs (choroideremia or X-linked retinitis pigmentosa), and healthy women were recruited. Macular angiograms (3x3mm, Zeiss Plex Elite 9000) were obtained in 36 eyes of 15 X-linked IRD female carriers and 21 age-matched control women. Two tests were applied to test vascular reactivity: (i) mild hypoxia and (ii) handgrip test, to induce a vasodilatory or vasoconstrictive response, respectively. Changes to vessel density (VD) and vessel length density (VLD) were independently evaluated during each of the tests for both the superficial and deep capillary plexuses. Results: In the control group, the superficial and deep VD decreased during the handgrip test (p<0.001 and p=0.037, respectively). Mean superficial VLD also decreased during the handgrip test (p=0.025), while the deep plexus did not change significantly (p=0.108). During hypoxia, VD and VLD increased in the deep plexus (p=0.027 and p=0.052, respectively) but not in the superficial plexus. In carriers, the physiologic vascular responses seen in controls were not observed in either plexus during either test, with no difference in VD or VLD noted (all p>0.05). Conclusions: Functional OCT-A is a useful tool to assess dynamic retinal microvascular changes. Subclinical impairment of the physiological vascular responses seen in carriers of X-linked IRDs may serve as a valuable clinical biomarker.

10.
Front Genet ; 15: 1409016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055259

RESUMEN

Introduction: Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods: Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results: The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion: We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.

11.
Immunotherapy ; : 1-12, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073397

RESUMEN

Geographic atrophy (GA) remains a leading cause of central vision loss with no known cure. Until recently, there were no approved treatments for GA, often resulting in poor quality of life for affected patients. GA is characterized by atrophic lesions on the retina that may eventually threaten the fovea. Emerging treatments have demonstrated the ability to reduce the rate of lesion growth, potentially preserving visual function. Avacincaptad pegol (ACP; Astellas Pharma Inc), a complement component 5 inhibitor, is an FDA-approved treatment for GA that has been evaluated in numerous clinical trials. Here we review the current clinical trial landscape of ACP, including critical post hoc analyses that suggest ACP may reduce the risk of severe loss among patients with GA.


Geographic atrophy (GA) is an advanced form of eye disease age-related macular degeneration. In people with GA, light-sensitive cells at the back of the eye (the retina) start to die, forming lesions. GA lesions usually get bigger over time and can lead to blindness. New medicines are being studied that work by slowing the growth of GA lesions. Avacincaptad pegol (ACP) is one medicine that acts on the immune system and is designed to block the C5 protein, helping stop the immune system from attacking cells in the retina. Based on clinical studies, ACP was shown to slow the growth of GA over time and has been approved by the FDA. This review article summarizes research on ACP.

12.
Diagnostics (Basel) ; 14(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39061682

RESUMEN

Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.

13.
Bioengineering (Basel) ; 11(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39061793

RESUMEN

The rapid advancement of computational infrastructure has led to unprecedented growth in machine learning, deep learning, and computer vision, fundamentally transforming the analysis of retinal images. By utilizing a wide array of visual cues extracted from retinal fundus images, sophisticated artificial intelligence models have been developed to diagnose various retinal disorders. This paper concentrates on the detection of Age-Related Macular Degeneration (AMD), a significant retinal condition, by offering an exhaustive examination of recent machine learning and deep learning methodologies. Additionally, it discusses potential obstacles and constraints associated with implementing this technology in the field of ophthalmology. Through a systematic review, this research aims to assess the efficacy of machine learning and deep learning techniques in discerning AMD from different modalities as they have shown promise in the field of AMD and retinal disorders diagnosis. Organized around prevalent datasets and imaging techniques, the paper initially outlines assessment criteria, image preprocessing methodologies, and learning frameworks before conducting a thorough investigation of diverse approaches for AMD detection. Drawing insights from the analysis of more than 30 selected studies, the conclusion underscores current research trajectories, major challenges, and future prospects in AMD diagnosis, providing a valuable resource for both scholars and practitioners in the domain.

14.
Ophthalmic Physiol Opt ; 44(6): 1188-1201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989810

RESUMEN

INTRODUCTION: Degeneration in choroideremia, unlike typical centripetal photoreceptor degenerations, is centred temporal to the fovea. Once the fovea is affected, the nasal visual field (temporal retina) is relatively spared, and the preferred retinal locus shifts temporally. Therefore, when reading left to right, only the right eye reads into a scotoma. We investigate how this unique property affects the ability to read an eye chart. METHODS: Standard- and low-luminance visual acuity (VA) for right and left eyes were measured with the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Letters in each line were labelled by column position. The numbers of letter errors for each position across the whole chart were summed to produce total column error scores for each participant. Macular sensitivity was assessed using microperimetry. Central sensitivity asymmetry was determined by the temporal-versus-nasal central macular difference and subsequently correlated to a weighted ETDRS column error score. Healthy volunteers and participants with X-linked retinitis pigmentosa GTPase regulator associated retinitis pigmentosa (RPGR-RP) were used as controls. RESULTS: Thirty-nine choroideremia participants (median age 44.9 years [IQR 35.7-53.5]), 23 RPGR-RP participants (median age 30.8 years [IQR 26.5-40.5]) and 35 healthy controls (median age 23.8 years [IQR 20.3-29.0]) were examined. In choroideremia, standard VA in the right eye showed significantly greater ETDRS column errors on the temporal side compared with the nasal side (p = 0.002). This significantly correlated with greater asymmetry in temporal-versus-nasal central macular sensitivity (p = 0.04). No significant patterns in ETDRS column errors or central macular sensitivity were seen in the choroideremia left eyes, nor in RPGR-RP and control eyes. CONCLUSION: Difficulty in tracking across lines during ETDRS VA testing may cause excess errors independent of true VA. VA assessment with single-letter optotype systems may be more suitable, particularly for patients with choroideremia, and potentially other retinal diseases with asymmetric central macular sensitivity or large central scotomas including geographic atrophy.


Asunto(s)
Coroideremia , Agudeza Visual , Campos Visuales , Humanos , Coroideremia/fisiopatología , Coroideremia/diagnóstico , Agudeza Visual/fisiología , Masculino , Adulto , Persona de Mediana Edad , Femenino , Campos Visuales/fisiología , Mácula Lútea/fisiopatología , Mácula Lútea/diagnóstico por imagen , Adulto Joven , Lectura , Tomografía de Coherencia Óptica/métodos , Pruebas de Visión/métodos , Pruebas del Campo Visual/métodos
15.
Front Ophthalmol (Lausanne) ; 4: 1349234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984112

RESUMEN

Purpose: To determine the structure of the cone photoreceptor mosaic in the macula in eyes with retinitis pigmentosa related to Usher syndrome using adaptive optics fundus (AO) imaging and to correlate these findings with those of the standard clinical diagnostics. Methods: Ten patients with a genetically confirmed retinitis pigmentosa in Usher syndrome due to biallelic variants in MYO7A or USH2A were enrolled in the study. All patients underwent a complete ophthalmological examination including best corrected visual acuity (BCVA), spectral-domain optical coherence tomography (SD-OCT) with fundus autofluorescence photography (FAF), full-field (ffERG) and multifocal electroretinography (mfERG) and Adaptive Optics Flood Illuminated Ophthalmoscopy (AO, rtx1™, Imagine Eyes, Orsay, France). The cone density was assessed centrally and at each 0.5 degree horizontally and vertically from 1-4 degree of eccentricity. Results: In the AO images, photoreceptor cell death was visualized as a disruption of the cone mosaic and low cone density. In the early stage of the disease, cones were still visible in the fovea, whereas outside the fovea a loss of cones was recognizable by blurry, dark patches. The blurry patches corresponded to the parafoveal hypofluorescent ring in the FAF images and the beginning loss of the IS/OS line and external limiting membrane in the SD-OCT images. FfERGs were non-recordable in 7 patients and reduced in 3. The mfERG was reduced in all patients and correlated significantly (p <0.001) with the cone density. The kinetic visual field area, measured with III4e and I4e, did not correlate with the cone density. Conclusion: The structure of the photoreceptors in Usher syndrome patients were detectable by AO fundus imaging. The approach of using high-resolution technique to assess the photoreceptor structure complements the established clinical examinations and allows a more sensitive monitoring of early stages of retinitis pigmentosa in Usher syndrome.

16.
Exp Eye Res ; 245: 109980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914302

RESUMEN

The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.


Asunto(s)
Retina , Perros , Animales , Humanos , Retina/metabolismo , Regulación de la Expresión Génica/fisiología , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Transcriptoma , Epitelio Pigmentado de la Retina/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Masculino , Femenino , Coroides/metabolismo
17.
Genes (Basel) ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927740

RESUMEN

Retinitis pigmentosa (RP) is a heterogeneous inherited retinal disorder. Mutations in KIZ cause autosomal recessive (AR) RP. We aimed to characterize the genotype, expression pattern, and phenotype in a large cohort of KIZ cases. Sanger and whole exome sequencing were used to identify the KIZ variants. Medical records were reviewed and analyzed. Thirty-one patients with biallelic KIZ mutations were identified: 28 homozygous for c.226C>T (p.R76*), 2 compound heterozygous for p.R76* and c.3G>A (p.M1?), and one homozygous for c.247C>T (p.R83*). c.226C>T is a founder mutation among patients of Jewish descent. The clinical parameters were less severe in KIZ compared to DHDDS and FAM161A cases. RT-PCR analysis in fibroblast cells revealed the presence of four different transcripts in both WT and mutant samples with a lower percentage of the WT transcript in patients. Sequence analysis identified an exonic sequence enhancer (ESE) that includes the c.226 position which is affected by the mutation. KIZ mutations are an uncommon cause of IRD worldwide but are not rare among Ashkenazi Jews. Our data indicate that p.R76* affect an ESE which in turn results in the pronounced skipping of exon 3. Therefore, RNA-based therapies might show low efficacy since the mutant transcripts are spliced.


Asunto(s)
Mutación , Retinitis Pigmentosa , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma/métodos , Proteínas del Ojo/genética , Judíos/genética , Linaje , Fenotipo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología
18.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920696

RESUMEN

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.


Asunto(s)
Autofagia , Coroideremia , Células Madre Pluripotentes Inducidas , Epitelio Pigmentado de la Retina , Proteínas de Unión al GTP rab , Humanos , Proteínas Adaptadoras Transductoras de Señales , Coroideremia/patología , Coroideremia/genética , Coroideremia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Transducción de Señal
19.
Comput Biol Med ; 178: 108726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878400

RESUMEN

Retinal diseases are among nowadays major public health issues, deservedly needing advanced computer-aided diagnosis. We propose a hybrid model for multi label classification, whereby seven retinal diseases are automatically classified from Optical Coherence Tomography (OCT) images. We show that, by combining the strengths of Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs), we can produce a more powerful type of model for medical image classification, especially when considering local lesion information such as retinal diseases. CNNs are indeed proved to be efficient at parameter utilization and provide the ability to extract local features and multi-scale feature maps through convolutional operations. On the other hand, ViT's self-attention procedure allows processing long-range and global dependencies within an image. The paper clearly shows that the hybridization of these complementary capabilities (CNNs-ViTs) presents a high image processing potential that is more robust and efficient. The proposed model adopts a hierarchical CNN module called Convolutional Patch and Token Embedding (CPTE) instead of employing a direct tokenization approach using the raw input OCT image in the transformer. The CPTE module's role is to incorporate an inductive bias, to reduce the reliance on large-scale datasets, and to address the low-level feature extraction challenges of the ViT. In addition, considering the importance of local lesion information in OCT images, the model relies on a parallel module called Residual Depthwise-Pointwise ConvNet (RDP-ConvNet) for extracting high-level features. RDP-ConvNet utilizes depthwise and pointwise convolution layers within a residual network architecture. The overall performance of the HTC-Retina model was evaluated on three datasets: the OCT-2017, OCT-C8, and OCT-2014 ; outperforming previous established models, achieving accuracy rates of 99.40%, 97.00%, and 99.77%, respectively ; and sensitivity rates of 99.41%, 97.00%, and 99.77%, respectively. Notably, the model showed high performance while maintaining computational efficiency.


Asunto(s)
Redes Neurales de la Computación , Enfermedades de la Retina , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Humanos , Enfermedades de la Retina/diagnóstico por imagen , Retina/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
20.
Artículo en Inglés | MEDLINE | ID: mdl-38847892

RESUMEN

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA