Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.455
Filtrar
2.
Sci Total Environ ; 946: 174476, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38969119

RESUMEN

The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and ß-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.


Asunto(s)
Bacterias , Farmacorresistencia Microbiana , Fertilizantes , Estiércol , Microbiología del Suelo , Animales , Porcinos , Estiércol/microbiología , Bovinos , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos , Antibacterianos/farmacología , Suelo/química , Agricultura/métodos
3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38952008

RESUMEN

Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.


Asunto(s)
Rizosfera , Solanum lycopersicum , Ácido Succínico , Solanum lycopersicum/microbiología , Ácido Succínico/metabolismo , Interacciones Microbianas , Microbiología del Suelo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pseudomonas putida/crecimiento & desarrollo
4.
Sci Total Environ ; : 175009, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053533

RESUMEN

The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.

5.
ISME Commun ; 4(1): ycae081, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38988701

RESUMEN

Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.

6.
Front Microbiol ; 15: 1413538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989025

RESUMEN

Phosphate-solubilizing bacteria (PSB) enhance plant phosphorus utilization through their ability to dissolve phosphorus. To address the low utilization of nitrogen, phosphorus, potassium, zinc, and selenium by tea plants in acidic, selenium-rich soils, the study aimed to investigate the impact of exogenous PSB on soil nutrients and the absorption of zinc and selenium by tea plants. Following the inoculation of potted Longjing and Huangjinya varieties with exogenous phosphorus-solubilizing bacteria, we determined the concentrations of AN, AP, AK, Zn, and Se in their rhizosphere soil, in addition to the Zn and Se contents in their aboveground and belowground parts. The results show that after respective treatment with the three PSB, the concentration of available P in the tea plant rhizosphere soil significantly increased, with PMS08 having the most pronounced effect.After the same treatment, In the rhizosphere soil of Longjing tea plants, the AN content increased by 26.47%, 18.41%, and 7.51%, respectively, relative to the control, while the AK content decreased in the rhizosphere soil of Huangjinya tea plants. Inoculation with the three PSB resulted in a greater content of available Se in both the aboveground and belowground parts of the two tea plants. After inoculation with PMS20, the available Zn content of the belowground parts of Longjing and Huangjinya tea plants respectively decreased by 13.42% and 15.69% in comparison with the control. Additionally, after inoculating Longjing tea plants with PSt09 and Huangjinya tea plants with PMS08, the content of available Zn in their belowground parts significantly decreased by 9.22% and 35.74%, respectively. Evidently, the inoculation with the three phosphorus-solubilizing bacteria is beneficial for the uptake of available P by tea plants, promoting the utilization and accumulation of available Se. However, the content of AN or AK in rhizosphere soil varies between different tea plant varieties inoculated with the same kind of phosphorus-solubilizing bacteria. Moreover, the content of available Zn in tea plants also differs, highlighting the need to further investigate the differential effects of phosphorus-solubilizing bacteria on different plant varieties.

7.
ISME J ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984785

RESUMEN

The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.

8.
Pest Manag Sci ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984867

RESUMEN

The construction of a plant rhizosphere system enriched with beneficial microbes (BMs) can efficiently help plants defend against phytophagous insects. However, our comprehensive understanding of this approach is still incomplete. In this review, we methodically analyzed the progress made over the last decade, identifying both challenges and opportunities. The main methods for developing a BMs-enriched rhizosphere system include inoculating exogenous BMs into plants, amending the existing soil microbiomes with amendments, and utilizing plants to shape the soil microbiomes. BMs can assist plants in suppressing phytophagous insects across many orders, including 13 Lepidoptera, seven Homoptera, five Hemiptera, five Coleoptera, four Diptera, and one Thysanoptera species by inducing plant systemic resistance, enhancing plant tolerance, augmenting plant secondary metabolite production, and directly suppressing herbivores. Context-dependent factors such as abiotic and biotic conditions, as well as the response of insect herbivores, can affect the outcomes of BM-assisted plant defense. Several challenges and opportunities have emerged, including the development of synthetic microbial communities for herbivore control, the integration of biosensors for effectiveness assessment, the confirmation of BM targets for phytophagous insect defense, and the regulation of outcomes via smart farming with artificial intelligence. This study offers valuable insights for developing a BM-enriched rhizosphere system within an integrated pest management approach. © 2024 Society of Chemical Industry.

9.
Environ Sci Technol ; 58(28): 12542-12553, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38967661

RESUMEN

Although exogenous chemicals frequently exhibit a biphasic response in regulating plant growth, characterized by low-dose stimulation and high-dose inhibition, the underlying mechanisms remain elusive. This study demonstrates, for the first time, the compensatory function of rhizosphere microbiota in assisting plants to withstand pesticide stress. It was observed that pak choi plants, in response to foliar-spraying imidacloprid at both low and high doses, could increase the total number of rhizosphere bacteria and enrich numerous beneficial bacteria. These bacteria have capabilities for promoting plant growth and degrading the pesticide, such as Nocardioides, Brevundimonas, and Sphingomonas. The beneficial bacterial communities were recruited by stressed plants through increasing the release of primary metabolites in root exudates, such as amino acids, fatty acids, and lysophosphatidylcholines. At low doses of pesticide application, the microbial compensatory effect overcame pesticide stress, leading to plant growth promotion. However, with high doses of pesticide application, the microbial compensatory effect was insufficient to counteract pesticide stress, resulting in plant growth inhibition. These findings pave the way for designing improved pesticide application strategies and contribute to a better understanding of how rhizosphere microbiota can be used as an eco-friendly approach to mitigate chemical-induced stress in crops.


Asunto(s)
Plaguicidas , Rizosfera , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Microbiología del Suelo , Microbiota/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico
10.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031813

RESUMEN

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Asunto(s)
Productos Agrícolas , Microbiota , Rizosfera , Microbiología del Suelo , Productos Agrícolas/microbiología , Suelo/química , Hongos/fisiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Invertebrados/microbiología , Invertebrados/fisiología
11.
J Hazard Mater ; 477: 135242, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39032184

RESUMEN

Miscanthus is a common pioneer plant with abundant genetic variation in abandoned mines in southern China. However, the extent to which genetic differentiation among species modulates rhizosphere bacterial communities remains unclear. Miscanthus samples were collected from 26 typical abandoned heavy-metal mines with different soil types in southern China, tested using 14 pairs of simple sequence repeats (SSR) primers, and classified into two genotypes based on Nei's genetic distance. The structure and diversity of rhizosphere bacterial communities were examined using 16 S rRNA sequencing. The results showed that among the factors affecting the rhizosphere bacterial community structure of Miscanthus samples, the role of genotype was not significant, and geographical conditions were the most important factors, followed by pH and total organic carbon (TOC). The process of rhizospheric community assembly varied among different genotypes; however, the recruited species and their abundances were similar. Collectively, we provided an approach based on genetic differentiation to quantify the relative contribution of genotypes to the rhizosphere bacterial community, demonstrating that genotypes contribute less than soil conditions. Our findings provide new insights into the role of host genetics in the ecological processes of plant rhizosphere bacterial communities in abandoned mines and provide theoretical support for microbe-assisted phytoremediation.

12.
J Agric Food Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021203

RESUMEN

The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant-soil system.

14.
J Agric Food Chem ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018060

RESUMEN

Selenium (Se) has been widely reported to affect plant growth, nutrient cycling, and the rhizobiome. However, how Se shapes the rhizobiome and interacts with plants remains largely elusive. Pot and hydroponic experiments were employed to elucidate the regulatory mechanism of Se in the citrus rhizobiome. Compared to the control, soil Se application significantly increased the root biomass (34.7%) and markedly reduced rhizosphere HCl-P, H2O-P, NaHCO3-IP, and residual-P of citrus, which were related to the variation of citrus rhizobiome. Se primarily enriched Proteobacteria and Actinobacteria as well as the phosphorus (P) functional genes phod and pqqc. Further study revealed that Se altered the metabolite profile of root exudate, particularly enhancing the abundance of l-cyclopentylglycine, cycloleucine, l-proline, l-pipecolic acid, and inositol, which played a key role in reshaping the citrus rhizobiome. These metabolites could serve as both nutrient sources and signaling molecules, thus supporting the growth or chemotaxis of the functional microbes. These bacterial taxa have the potential to solubilize P or stimulate plant growth. These findings provide a novel mechanistic understanding of the intriguing interactions between Se, root exudate, and rhizosphere microbiomes, and demonstrate the potential for utilizing Se to regulate rhizobiome function and enhance soil P utilization in citrus cultivation.

15.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982145

RESUMEN

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Asunto(s)
Capsicum , Filogenia , Rizosfera , Capsicum/microbiología , Capsicum/crecimiento & desarrollo , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/clasificación , ARN Ribosómico 16S/genética , Genoma Bacteriano , Desarrollo de la Planta
16.
Microbiome ; 12(1): 124, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982519

RESUMEN

BACKGROUND: Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS: Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION: We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.


Asunto(s)
Flores , Microbiota , Raíces de Plantas , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Zea mays/genética , Raíces de Plantas/microbiología , Flores/microbiología , Flores/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Transcriptoma , Mutación , Regulación de la Expresión Génica de las Plantas
17.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000433

RESUMEN

Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.


Asunto(s)
Sequías , Manihot , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Manihot/microbiología , Bacterias/clasificación , Bacterias/genética , ARN Ribosómico 16S/genética , Microbiota , Raíces de Plantas/microbiología , Suelo/química
18.
Environ Res ; 259: 119523, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960352

RESUMEN

Strengthening rhizosphere effects to enhance pollutant removal is a hotspot of constructed wetlands (CWs) research in recent years, and improving the root traits and metabolic capacity of macrophytes is crucial for strengthening rhizosphere effects. In the field experiment, two types of subsurface flow (SSF) CWs (CW10 and CW20, with substrate depths of 10 and 20 cm, respectively) under the vertical spatial stress of roots (VSSR) and two types of non-VSSR SSF CWs (CW40 and CW60) were adopted with Typha orientalis as cultivated plants to investigate the variability of root development, metabolism, and pollutant removal at different substrate depths. VSSR induced substantial redundant root development, which significantly increased root-shoot ratio, fine and lateral root biomass, root porosity, and root activity, with lateral and fine root biomass of CW20 reaching 409.17 and 237.42 g/m2, respectively, which were 3.18 and 5.28 times those of CW60. The radical oxygen loss (ROL) and dissolved organic carbon (DOC) levels of CW20 single plant were 1.36 and 4.57 times higher than those of CW60, respectively, and more types of root exudates were determined (e.g., aldehydes, ketones and amides). More aerobic heterotrophs (e.g., Massilia, Planomicrobium), nitrification bacteria (e.g., Ellin6067, Nitrospira), aerobic denitrification bacteria (e.g., Bacillu, Chryseobacterium, Pseudomonas) and denitrification phosphorus accumulating organisms (e.g., Flavobacterium) were enriched in the rhizosphere of CW20. This changed the main transformation pathways of pollutants and enhanced the removal of pollutants, with the COD, TN and TP average removal rates of CW20 increasing by 9.99%, 13.28% and 8.92%, respectively, compared with CW60. The ideotype root system architecture CW (RSACW; CW20) constructed in this study, which consists of a large number of fine and lateral roots, can stimulate more efficient rhizosphere effects stably and continuously.

19.
Sci Total Environ ; 948: 174917, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39034003

RESUMEN

The effects of changes in environmental temperatures on the immobilization or removal of cationic potentially toxic elements (PTE) in heavily polluted soils are often poorly understood, although both are widely studied in the context of phytostabilization. To address this issue, a novel compost-diatomite hybrid (CDH) amendment was developed and applied for assisted phytostabilization at two external temperature regimes. (Cd/Ni/Cu/Zn)-extremely polluted soils (unenriched and CDH-enriched) were cultivated with perennial ryegrass and native soil microbiome under greenhouse conditions and then transferred to freeze-thaw conditions (FTC). The decrease in metal potential toxicity in soils subjected to phytostabilization following both temperature treatments was characterized by a combination of sequential extraction and atomic absorption measurements. The soil microbiome was characterized by high-throughput sequencing. In a relative comparison, the greatest decrease in the content of all PTEs in CDH-enriched soil (compared to unenriched soil) appeared in FTC. Furthermore, under the influence of FTC, in the relative comparison between two CDH-enriched soils (exposed-, and not-exposed- to FTC) and two unenriched soils (exposed-, and not-exposed- to FTC), the content of all PTEs decreased more sharply in the CDH-enriched series than in the unenriched series. The largest redistribution into four sequentially extracted fractions in CDH-enriched soil was found for Zn. Based on the distribution pattern, Zn immobilization was greater in CDH-enriched soil in FTC. CDH increased species richness in the soil, while FTC stimulated the growth of Bacteroidia, Alphaproteobacteria, Theromomicrobia, and Gammaproteobacteria. The analysis of the functionalities of the microbiome indicated enhanced metal transportation and defense systems in samples exposed to FTC. The current research is crucial for understanding how extreme environmental conditions in both cases high pollutant levels and low temperatures affect the movement and transformation of PTEs in polluted soils during phytostabilization.

20.
Front Microbiol ; 15: 1379409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044953

RESUMEN

Among various factors related to the forest carbon pool, the tree stand age, which interacts with soil organic matter, decomposition rates, and microbial activity, is essential and cannot be disregarded. However, knowledge about how tree phases influence soil carbon sinks is not adequate. This study sampled Larix kaempferi (Japanese larch) plantations with different tree stand ages to investigate the temporal dynamics of soil carbon sink in the forest. Physiochemical analyses and high-throughput sequencing results further revealed the interactions of tree stands and their related rhizosphere microbiome. It was found that microbial composition and metabolic activity were significantly affected by different tree ages, whose structures gradually diversified and became more stable from young to mature forests. Many keystone taxa from the phyla Chloroflexi, Proteobacteria, Acidobacteriota, and Nitrospirota were found to be associated with carbon transformation processes. Interestingly, the carbon resource utilization strategies of microbial groups related to tree ages also differed, with near-mature forest soils showing better labile carbon degradation capacity, and mature forests possessing higher degradation potential of recalcitrant carbon. Age-altered tree growth and physiology were found to interact with its rhizosphere microbiome, which is the driving factor in the formation and stability of forest soil carbon. This study highlighted that the tree age-associated soil microbiomes, which provided insights into their effects on soil carbon transformation, were significant in enhancing the knowledge of carbon sequestration in L. kaempferi plantations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA