Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008347

RESUMEN

Previously, Tuller et al. found that the first 30-50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5' slow translation 'ramp.' We confirm that 5' regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5' translation. However, we also find that the 5' (and 3') ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5' end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5' ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5' end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5' ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5' translation is a 'spandrel'--a non-adaptive consequence of something else, in this case, the turnover of 5' ends in evolution, and it does not improve translation.


Asunto(s)
Codón , Evolución Molecular , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Codón/genética , Uso de Codones , Ribosomas/metabolismo , Ribosomas/genética , Regiones no Traducidas 5'/genética
2.
FEBS J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949989

RESUMEN

Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.

3.
Cell Rep ; 43(6): 114287, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823018

RESUMEN

Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.


Asunto(s)
Endorribonucleasas , Inmunidad Innata , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Humanos , División del ARN , Animales , ARN Bicatenario/metabolismo , Ratones , Ribonucleasa Pancreática/metabolismo
4.
EMBO J ; 43(4): 484-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177497

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Asunto(s)
Bacillus subtilis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ribosomas/metabolismo , Péptidos/metabolismo
5.
bioRxiv ; 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693516

RESUMEN

Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.

6.
Cell Rep ; 42(9): 113056, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651229

RESUMEN

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.


Asunto(s)
Fibrosis Quística , Biosíntesis de Proteínas , Humanos , Codón de Terminación/metabolismo , Codón sin Sentido , Ribosomas/metabolismo , Fibrosis Quística/genética
7.
RNA Biol ; 19(1): 609-621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491909

RESUMEN

Cells of metazoans respond to internal and external stressors by activating stress response pathways that aim for re-establishing cellular homoeostasis or, if this cannot be achieved, triggering programmed cell death. Problems during translation, arising from defective mRNAs, tRNAs, ribosomes or protein misfolding, can activate stress response pathways as well as mRNA surveillance and ribosome quality control programs. Recently, ribosome collisions have emerged as a central signal for translational stress and shown to elicit different stress responses. Here, we review our current knowledge about the intricate mutual connections between ribosome collisions, stress response pathways and mRNA surveillance. A central factor connecting the sensing of collided ribosomes with degradation of the nascent polypeptides, dissociation of the stalled ribosomes and degradation of the mRNA by no-go or non-stop decay is the E3-ligase ZNF598. We tested whether ZNF598 also plays a role in nonsense-mediated mRNA decay (NMD) but found that it is dispensable for this translation termination-associated mRNA surveillance pathway, which in combination with other recent data argues against stable ribosome stalling at termination codons being the NMD-triggering signal.


Asunto(s)
Seguro , Ribosomas , Degradación de ARNm Mediada por Codón sin Sentido , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911752

RESUMEN

The presence of a single cluster of nonoptimal codons was found to decrease a transcript's half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae The impact of multiple nonoptimal codon clusters on a transcript's half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5' end can lead to synergistic effects that increase a messenger RNA's (mRNA's) half-life in S. cerevisiae Specifically, the 5' end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5' end is the primary determinant of mRNA half-life. These results suggest the "translational ramp," in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/biosíntesis , Semivida , Modelos Genéticos
9.
Trends Biochem Sci ; 46(9): 731-743, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966939

RESUMEN

Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
10.
Curr Genet ; 67(1): 19-26, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33044589

RESUMEN

Translating ribosomes slow down or completely stall when they encounter obstacles on mRNAs. Such events can lead to ribosomes colliding with each other and forming complexes of two (disome), three (trisome) or more ribosomes. While these events can activate surveillance pathways, it has been unclear if collisions are common on endogenous mRNAs and whether they are usually detected by these cellular pathways. Recent genome-wide surveys of collisions revealed widespread distribution of disomes and trisomes across endogenous mRNAs in eukaryotic cells. Several studies further hinted that the recognition of collisions and response to them by multiple surveillance pathways depend on the context and duration of the ribosome stalling. This review considers recent efforts in the identification of endogenous ribosome collisions and cellular pathways dedicated to sense their severity. We further discuss the potential role of collided ribosomes in modulating co-translational events and contributing to cellular homeostasis.


Asunto(s)
Biosíntesis de Proteínas/genética , Ribosomas/genética , Ubiquitinación/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
11.
Cell ; 182(2): 404-416.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610081

RESUMEN

Problems arising during translation of mRNAs lead to ribosome stalling and collisions that trigger a series of quality control events. However, the global cellular response to ribosome collisions has not been explored. Here, we uncover a function for ribosome collisions in signal transduction. Using translation elongation inhibitors and general cellular stress conditions, including amino acid starvation and UV irradiation, we show that ribosome collisions activate the stress-activated protein kinase (SAPK) and GCN2-mediated stress response pathways. We show that the MAPKKK ZAK functions as the sentinel for ribosome collisions and is required for immediate early activation of both SAPK (p38/JNK) and GCN2 signaling pathways. Selective ribosome profiling and biochemistry demonstrate that although ZAK generally associates with elongating ribosomes on polysomal mRNAs, it specifically auto-phosphorylates on the minimal unit of colliding ribosomes, the disome. Together, these results provide molecular insights into how perturbation of translational homeostasis regulates cell fate.


Asunto(s)
Ribosomas/metabolismo , Estrés Fisiológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Anisomicina/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de la radiación , Activación Enzimática , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Polirribosomas/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Rayos Ultravioleta , eIF-2 Quinasa/metabolismo
12.
Elife ; 62017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28498106

RESUMEN

Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes.


Asunto(s)
Escherichia coli/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Simulación por Computador , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA