RESUMEN
Soil salinity reduces root hydraulic conductivity (Lpr) of several plant species. However, how cellular signaling and root hydraulic properties are linked in plants that can cope with water restriction remains unclear. In this work, we exposed the halotolerant species red beet (Beta vulgaris) to increasing concentrations of NaCl to determine the components that might be critical to sustaining the capacity to adjust root hydraulics. Our strategy was to use both hydraulic and cellular approaches in hydroponically grown seedlings during the first osmotic phase of salt stress. Interestingly, Lpr presented a bimodal profile response apart from the magnitude of the imposed salt stress. As well as Lpr, the PIP2-aquaporin profile follows an unphosphorylated/phosphorylated pattern when increasing NaCl concentration while PIP1 aquaporins remain constant. Lpr also shows high sensitivity to cycloheximide. In low NaCl concentrations, Lpr was high and 70 % of its capacity could be attributed to the CHX-inhibited cell-to-cell pathway. More interestingly, roots can maintain a constant spontaneous exudated flow that is independent of the applied NaCl concentration. In conclusion, Beta vulgaris root hydraulic adjustment completely lies in a dominant cell-to-cell pathway that contributes to satisfying plant water demands.
Asunto(s)
Acuaporinas/fisiología , Beta vulgaris/fisiología , Transporte Biológico/fisiología , Fosforilación/fisiología , Raíces de Plantas/fisiología , Salinidad , Plantones/fisiología , Estrés Fisiológico/fisiología , Productos Agrícolas/fisiologíaRESUMEN
Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.