Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecol Evol ; 11(3): 1150-1164, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598120

RESUMEN

Large areas of highly productive tropical forests occur on weathered soils with low concentrations of available phosphorus (P). In such forests, root and microbial production of acid phosphatase enzymes capable of mineralizing organic phosphorus is considered vital to increasing available P for plant uptake.We measured both root and soil phosphatase throughout depth and alongside a variety of root and soil factors to better understand the potential of roots and soil biota to increase P availability and to constrain estimates of the biochemical mineralization within ecosystem models.We measured soil phosphatase down to 1 m, root phosphatase to 30 cm, and collected data on fine-root mass density, specific root length, soil P, bulk density, and soil texture using soil cores in four tropical forests within the Luquillo Experimental Forest in Puerto Rico.We found that soil phosphatase decreased with soil depth, but not root phosphatase. Furthermore, when both soil and root phosphatase were expressed per soil volume, soil phosphatase was 100-fold higher that root phosphatase.Both root and soil factors influenced soil and root phosphatase. Soil phosphatase increased with fine-root mass density and organic P, which together explained over 50% of the variation in soil phosphatase. Over 80% of the variation in root phosphatase per unit root mass was attributed to specific root length (positive correlation) and available (resin) P (negative correlation). Synthesis: Fine-root traits and soil P data are necessary to understand and represent soil and root phosphatase activity throughout the soil column and across sites with different soil conditions and tree species. These findings can be used to parameterize or benchmark estimates of biochemical mineralization in ecosystem models that contain fine-root biomass and soil P distributions throughout depth.

2.
Sci. agric ; 77(5): e20180420, 2020. ilus, tab
Artículo en Inglés | VETINDEX | ID: biblio-1497882

RESUMEN

The root system architecture (RSA) of plants and its functioning play a fundamental role in a number of plant growth mechanisms including water and nutrient uptake. Optimization of the RSA is important for stable and increased plant productivity under adverse conditions. Despite its great importance, studying the RSA is notoriously laborious because of the difficulty of accessing the rooting system of plants. We developed a root phenotyping platform, PhenoRoots, which allows for the non-invasive study of plant RSA. The system was built using inexpensive material and was designed to provide medium throughput. Substrate or soil-filled rhizotrons are used to grow plantlets, whose roots are directly visible through a glass plate. An experiment conducted on a panel of twenty Upland cotton (Gossypium hirsutum L.) varieties demonstrated the usefulness of the platform in assessing RSA traits. A number of traits, destructive and non-destructive, related to the RSA were measured and statistically analyzed. The non-destructive traits based on image analysis of roots were more accurate and showed high correlation with the time-consuming destructive measurements. The platform allowed for capturing the phenotypic and genetic variability found in the panel of cotton varieties, and to define three contrasting RSA patterns. PhenoRoots provides an inexpensive alternative to the medium throughput analysis of RSA traits in plants.


Asunto(s)
Gossypium/crecimiento & desarrollo , Producción de Cultivos/métodos , Raíces de Plantas/crecimiento & desarrollo , Arachis/crecimiento & desarrollo , Hidroponía/métodos , Oryza/crecimiento & desarrollo , Phaseolus/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
3.
Sci. agric. ; 77(5): e20180420, 2020. ilus, tab
Artículo en Inglés | VETINDEX | ID: vti-24802

RESUMEN

The root system architecture (RSA) of plants and its functioning play a fundamental role in a number of plant growth mechanisms including water and nutrient uptake. Optimization of the RSA is important for stable and increased plant productivity under adverse conditions. Despite its great importance, studying the RSA is notoriously laborious because of the difficulty of accessing the rooting system of plants. We developed a root phenotyping platform, PhenoRoots, which allows for the non-invasive study of plant RSA. The system was built using inexpensive material and was designed to provide medium throughput. Substrate or soil-filled rhizotrons are used to grow plantlets, whose roots are directly visible through a glass plate. An experiment conducted on a panel of twenty Upland cotton (Gossypium hirsutum L.) varieties demonstrated the usefulness of the platform in assessing RSA traits. A number of traits, destructive and non-destructive, related to the RSA were measured and statistically analyzed. The non-destructive traits based on image analysis of roots were more accurate and showed high correlation with the time-consuming destructive measurements. The platform allowed for capturing the phenotypic and genetic variability found in the panel of cotton varieties, and to define three contrasting RSA patterns. PhenoRoots provides an inexpensive alternative to the medium throughput analysis of RSA traits in plants.(AU)


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Producción de Cultivos/métodos , Gossypium/crecimiento & desarrollo , Hidroponía/métodos , Glycine max/crecimiento & desarrollo , Phaseolus/crecimiento & desarrollo , Arachis/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo
4.
J Exp Bot ; 70(20): 5631-5642, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31359044

RESUMEN

Inorganic phosphorus (Pi) fertilizers are expected to become scarce in the near future; so, breeding for improved Pi acquisition-related root traits would decrease the need for fertilizer application. This work aimed to decipher the physiological and molecular mechanisms underlying the differences between two commercial wheat cultivars (Crac and Tukan) with contrasting Pi acquisition efficiencies (PAE). For that, four independent experiments with different growth conditions were conducted. When grown under non-limiting Pi conditions, both cultivars performed similarly. Crac was less affected by Pi starvation than Tukan, presenting higher biomass production, and an enhanced root development, root:shoot ratio, and root efficiency for Pi uptake under this condition. Higher PAE in Crac correlated with enhanced expression of the Pi transporter genes TaPht1;2 and TaPht1;10. Crac also presented a faster and higher modulation of the IPS1-miR399-PHO2 pathway upon Pi starvation. Interestingly, Crac showed increased levels of strigolactones, suggesting a direct relationship between this phytohormone and plant P responses. Based on these findings, we propose that higher PAE of the cultivar Crac is associated with an improved P signalling through a fine-tuning modulation of PHO2 activity, which seems to be regulated by strigolactones. This knowledge will help to develop new strategies for improved plant performance under P stress conditions.


Asunto(s)
Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo
5.
Biosci. j. (Online) ; 34(4): 917-926, july/aug. 2018. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-967135

RESUMEN

Most studies that have registered amelioration of Al toxicity due to root cation exchange capacity (CEC) decrease with B application were conducted using eudicotyledonous species (high root CEC). However, the effect of B/Al interaction on the root CEC values in species with low root CEC such as corn (Zea mays L.) has been understudied. Thus, this study aimed to: (1) verify if B decreases root CEC and if it benefits the growth and nutrient uptake in corn plants under Al toxicity; and (2) verify which method of root CEC analysis better differentiates the effects of B and Al. Corn seedlings were grown in complete nutrient solution with the following treatments: 0, 50, and 200 µM of B versus 0 and 300 µM of Al. Root attributes showed correlations with nutrient depletion from the nutrient solution, but nutrient depletion generally varied with transpiration in two depletion tests. The addition of B or Al in nutrient solution decreased root CEC; however, B failed to decrease Al toxicity in corn plants. The four methods used to determine CEC of corn roots had contrasting results, particularly with respect to the effect of B in the presence of Al.


A maioria dos estudos que registraram amenização da toxidez de Al devido ao decréscimo da capacidade de troca de cátions (CTC) radicular com a aplicação de B foram realizados com espécies eudicotiledôneas (alta CTC radicular). Contudo, o efeito da interação B/Al nos valores de CTC radicular em espécies de baixa CTC radicular, como no milho (Zea mays L.), é pouco conhecido. Assim, os objetivos desse estudo foram: (1) verificar se o B reduz a CTC radicular e se isso beneficia o crescimento e a absorção de nutrientes em plantas de milho sob toxidez por Al; (2) verificar qual método para análise de CTC radicular diferencia melhor o efeito do B e Al. Plântulas de milho foram cultivadas em solução nutritiva completa com os seguintes tratamentos: 0, 50 e 200 µM de B versus 0 e 300 µM de Al. Os atributos radiculares apresentaram correlações com a depleção de nutrientes da solução nutritiva, mas, em geral, a depleção de nutrientes variou principalmente com a transpiração em dois testes de depleção. A adição de B na solução nutritiva reduziu a CTC radicular, o que também ocorreu quando o Al foi adicionado, contudo, o B não aliviou a toxidez por Al nas plantas de milho. Os quatro métodos usados para determinar a CTC radicular do milho tiveram resultados contrastantes, particularmente com relação ao efeito do B na presença de Al.


Asunto(s)
Boro , Acidez del Suelo , Raíces de Plantas , Toxicidad , Aluminio
6.
Front Plant Sci ; 9: 752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922321

RESUMEN

Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980-2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between all the directly related PAE traits and its return to the host plant.

7.
Ecology ; 98(5): 1388-1398, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28263365

RESUMEN

Nitrogen (N) availability influences the productivity and distribution of plants in tropical montane forests. Strategies to acquire soil N, such as direct uptake of organic compounds or associations with root symbionts to enhance N acquisition in exchange for carbon (C), may facilitate plant species coexistence and ecosystem N retention. Alternatively, rapid microbial turnover of soil N forms in tropical soils might promote flexible plant N-uptake strategies and mediate species coexistence. We tested whether sympatric plant species with different root symbiont associations, and therefore potentially different nutrient acquisition strategies, partition chemical forms of N or show plasticity in N uptake in a tropical pre-montane forest in Panama. We traced the movement of three 15 N forms into soil pools, microbes, and seedlings of eleven species differing in root traits. Seedlings were grown in a split-plot field transplant experiment, with plots receiving equimolar mixtures of ammonium, nitrate, and glycine, with one form isotopically labeled in each block. After 48 h, more 15 N was recovered in microbes than in plants, while all pools (extractable organic and inorganic N, microbial biomass, and leaves) contained greater amounts of 15 N from nitrate than from ammonium or glycine. Furthermore, 13 C from dual-labeled glycine was not recovered in the leaves of any seedling, suggesting the studied species do not directly take up organic N or transform organic N prior to translocation to leaves. Nitrogen uptake differed by root symbiont group only for nitrate, with greater 15 N recovery in plants with arbuscular mycorrhizal (AM) associations or proteoid roots compared to orchids. Some root trait groups differed in 15 N recovery among N forms, with greater nitrate uptake than ammonium or glycine by AM-associated and N2 -fixing plants. However, only five of eleven species showed differences in uptake among N forms. These results indicate flexibility in uptake of N forms in tropical plants across root trait groups, with only a few species displaying weak preferences for a specific N form.


Asunto(s)
Bosques , Nitrógeno/metabolismo , Plantas/metabolismo , Panamá , Raíces de Plantas , Suelo
8.
Acta odontol. venez ; 48(3)2010. ilus, tab
Artículo en Español | LILACS | ID: lil-682888

RESUMEN

En esta revisión de la literatura se evidencia la relación entre la antropología dental y una de las especialidades de la odontología como lo es la periodoncia, en donde la primera contribuye con base a la evidencia científica al diagnóstico y tratamiento clínico de las enfermedades periodontales cuya etiología implique un rasgo morfológico dental coronal y/o radicular


This review demonstrate the relation between dental anthropology and periodontology. Dental anthropology contribute with the diagnosis and clinical treatment of the periodontal diseases whose aetiology implies a non-metric dental traits at crown or root


Asunto(s)
Humanos , Masculino , Femenino , Antropología Médica , Placa Dental , Periodoncia , Diente , Odontología
9.
Electron. j. biotechnol ; Electron. j. biotechnol;8(2): 8-13, Aug. 2005. ilus, tab
Artículo en Inglés | LILACS | ID: lil-640470

RESUMEN

Chickpea, a lesser-studied grain legume, is being investigated due to its taxonomic proximity with the model legume genome Medicago truncatula and its ability to endure and grow in relatively low soil water contents making it a model legume crop for the study of agronomic response to drought stress. Public databases currently contain very few sequences from chickpea associated with expression in root tissues. However, root traits are likely to be one of the most important components of drought tolerance in chickpea. Thus, we have generated a set of over 2800 chickpea expressed sequence tags (ESTs) from a library constructed after subtractive suppressive hybridization (SSH) of root tissue from two closely related chickpea genotypes possessing different sources of drought avoidance and tolerance (ICC4958 and Annigeri respectively). This database provides researchers in legume genomics with a major new resource for data mining associated with root traits and drought tolerance. This report describes the development and utilization of the database and provides the tools we have developed to facilitate the bioinformatics pipeline used for analysis of the ESTs in this database. We also discuss applications that have already been achieved using this resource.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA