Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
J Integr Plant Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092779

RESUMEN

Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.

2.
Dev Cell ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39053471

RESUMEN

Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.

3.
Curr Opin Plant Biol ; 81: 102597, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067084

RESUMEN

Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.

4.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844667

RESUMEN

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Asunto(s)
Arachis , Biopelículas , Bradyrhizobium , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta , Raíces de Plantas , Nódulos de las Raíces de las Plantas , Simbiosis , Arachis/microbiología , Arachis/crecimiento & desarrollo , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Interacciones Microbianas , Desarrollo de la Planta
5.
Plant Physiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865442

RESUMEN

The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.

6.
J Plant Physiol ; 297: 154260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701679

RESUMEN

Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.


Asunto(s)
Lotus , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Azufre , Simbiosis , Nódulos de las Raíces de las Plantas/metabolismo , Azufre/metabolismo , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Transporte Biológico , Fijación del Nitrógeno , Sulfatos/metabolismo , Raíces de Plantas/metabolismo
7.
Curr Biol ; 34(10): 2212-2220.e7, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642549

RESUMEN

The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.


Asunto(s)
Evolución Biológica , Señalización del Calcio , Marchantia , Medicago truncatula , Micorrizas , Simbiosis , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Medicago truncatula/genética , Micorrizas/fisiología , Marchantia/metabolismo , Marchantia/genética , Marchantia/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Embryophyta/metabolismo , Embryophyta/fisiología , Núcleo Celular/metabolismo
8.
Front Microbiol ; 15: 1345000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680912

RESUMEN

Introduction: Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods: In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results: The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion: This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.

9.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474164

RESUMEN

The interaction of plants and soil bacteria rhizobia leads to the formation of root nodule symbiosis. The intracellular form of rhizobia, the symbiosomes, are able to perform the nitrogen fixation by converting atmospheric dinitrogen into ammonia, which is available for plants. The symbiosis involves the resource sharing between two partners, but this exchange does not include equivalence, which can lead to resource scarcity and stress responses of one of the partners. In this review, we analyze the possible involvement of the autophagy pathway in the process of the maintenance of the nitrogen-fixing bacteria intracellular colony and the changes in the endomembrane system of the host cell. According to in silico expression analysis, ATG genes of all groups were expressed in the root nodule, and the expression was developmental zone dependent. The analysis of expression of genes involved in the response to carbon or nitrogen deficiency has shown a suboptimal access to sugars and nitrogen in the nodule tissue. The upregulation of several ER stress genes was also detected. Hence, the root nodule cells are under heavy bacterial infection, carbon deprivation, and insufficient nitrogen supply, making nodule cells prone to autophagy. We speculate that the membrane formation around the intracellular rhizobia may be quite similar to the phagophore formation, and the induction of autophagy and ER stress are essential to the success of this process.


Asunto(s)
Medicago truncatula , Rhizobium , Simbiosis/fisiología , Medicago truncatula/genética , Proteínas de Plantas/genética , Fijación del Nitrógeno/genética , Rhizobium/metabolismo , Autofagia , Nitrógeno/metabolismo , Carbono/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo
10.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365913

RESUMEN

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , ARN de Transferencia de Serina , Medicago truncatula/genética , Medicago truncatula/microbiología , Bacterias , Fijación del Nitrógeno/fisiología , Estilo de Vida , Nitrógeno , Ribonucleasas , Simbiosis/fisiología
11.
Plant J ; 118(3): 607-625, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361340

RESUMEN

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula , Proteínas de Plantas , Raíces de Plantas , Nódulos de las Raíces de las Plantas , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Medicago truncatula/efectos de los fármacos , Medicago truncatula/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Nodulación de la Raíz de la Planta/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/efectos de los fármacos , Péptidos/metabolismo , Péptidos/genética
12.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38363863

RESUMEN

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Asunto(s)
Fabaceae , Nódulos de las Raíces de las Plantas , Fosforilación , Nódulos de las Raíces de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , Fosfotransferasas/metabolismo , Simbiosis/genética , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38329875

RESUMEN

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transcriptoma/genética , Raíces de Plantas/genética , Linaje de la Célula/genética , Reguladores del Crecimiento de las Plantas
15.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553834

RESUMEN

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Asunto(s)
Fabaceae , Simbiosis , Simbiosis/genética , Filogenia , Nitrógeno , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Fabaceae/microbiología
16.
New Phytol ; 241(1): 24-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924218

RESUMEN

C-terminally encoded peptides (CEP) signaling peptides are drivers of systemic pathways regulating nitrogen (N) acquisition in different plants, from Arabidopsis to legumes, depending on mineral N availability (e.g. nitrate) and on the whole plant N demand. Recent studies in the Medicago truncatula model legume revealed how root-produced CEP peptides control the root competence for endosymbiosis with N fixing rhizobia soil bacteria through the activity of the Compact Root Architecture 2 (CRA2) CEP receptor in shoots. Among CEP genes, MtCEP7 was shown to be tightly linked to nodulation, and the dynamic temporal regulation of its expression reflects the plant ability to maintain a different symbiotic root competence window depending on the symbiotic efficiency of the rhizobium strain, as well as to reinitiate a new window of root competence for nodulation.


Asunto(s)
Medicago truncatula , Rhizobium , Nódulos de las Raíces de las Plantas/microbiología , Nodulación de la Raíz de la Planta/genética , Simbiosis/fisiología , Raíces de Plantas/metabolismo , Señales de Clasificación de Proteína , Rhizobium/fisiología , Medicago truncatula/microbiología , Péptidos/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098135

RESUMEN

Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.


Asunto(s)
Frankia , Magnoliopsida , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base
19.
Planta ; 258(5): 101, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847414

RESUMEN

MAIN CONCLUSION: A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gß and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.


Asunto(s)
Fabaceae , Proteínas de Unión al GTP Heterotriméricas , Rhizobium , Nódulos de las Raíces de las Plantas/genética , Nodulación de la Raíz de la Planta/fisiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fabaceae/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Simbiosis/fisiología , Plantas/metabolismo , Verduras/metabolismo , Suelo , Rhizobium/fisiología
20.
Curr Opin Plant Biol ; 76: 102478, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857037

RESUMEN

Root nodule development plays a vital role in establishing the mutualistic relationship between legumes and nitrogen-fixing rhizobia. Two primary processes are involved in nodule development: formative cell divisions in the root cortex and the subsequent differentiation of nodule cells. The first process involves the mitotic reactivation of differentiated root cortex cells to form nodule primordium after perceiving symbiotic signals. The second process enables the nascent nodule primordium cells to develop into various cell types, leading to the creation of a functional nodule capable of supporting nitrogen fixation. Thus, both division and differentiation of nodule cells are crucial for root nodule development. This review provides an overview of the most recent advancements in comprehending the cellular and molecular mechanisms underlying symbiotic nodule development in legumes.


Asunto(s)
Fabaceae , Rhizobium , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología , Fabaceae/metabolismo , Fijación del Nitrógeno , Rhizobium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA