Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38544202

RESUMEN

The current new type of inertial navigation system, including rotating inertial navigation systems and three-autonomy inertial navigation systems, has been increasingly widely applied. Benefited by the rotating mechanisms of these inertial navigation systems, alignment accuracy can be significantly enhanced by implementing IMU (Inertial Measurement Unit) rotation during the alignment process. The principle of suppressing initial alignment errors using rotational modulation technology was investigated, and the impact of various component error terms on alignment accuracy of IMU during rotation was analyzed. A corresponding error suppression scheme was designed to overcome the shortcoming of the significant scale factor error of fiber optic gyroscopes, and the research content of this paper is validated through corresponding simulations and experiments. The results indicate that the designed alignment scheme can effectively suppress the gyro scale factor error introduced by angular motion and improve alignment accuracy.

2.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139546

RESUMEN

Although the Lissajous frequency modulated (LFM) mode can improve the long-term and temperature stability of the scale factor (SF) for mode mismatch MEMS gyroscopes, its SF nonlinearity poses a significant limitation for full-scale accuracy maintenance. This paper examines the interaction effects among stiffness coupling, system phase delay, readout demodulation phase shift, and velocity amplitude mismatch within the control process. Based on the completion of frequency difference control and demodulation phase matching, we clarify that the remaining stiffness coupling and residual system phase error are the primary factors influencing SF nonlinearity. Furthermore, SF nonlinearity is reduced through error compensation. On one hand, this paper suppresses stiffness coupling through the observation of the instantaneous frequency difference and the application of the quadrature voltage. On the other hand, system phase error is compensated by observing the amplitude control force and tuning the reference in the Phase-Locked Loops (PLLs). Subsequent simulations of these methods demonstrated a remarkable 97% reduction in SF nonlinearity within the measurement range of ±500°/s. In addition, an observed rule dictates that maintaining a sufficiently large frequency split effectively constrains the SF nonlinearity.

3.
Micromachines (Basel) ; 14(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37763843

RESUMEN

The coupling efficiency of the fiber ring resonator has an important influence on the scale factor of the resonant fiber gyroscope. In order to improve the scale factor of the gyroscope, the coupling efficiency of the fiber ring resonator and its influential factors on the scale factor of the gyroscope are analyzed and tested. The results show that the coupling efficiency is affected by both the splitting ratio of the coupler and the loss in the cavity. When the coupling efficiency approaches 0.75 at the under-coupling state, the scaling factor of the gyroscope is the highest. This provides a theoretical reference and an experimental basis for the enhancement of the scaling factor of the resonant fiber gyroscope with the fiber ring resonator as the sensitive unit, providing options for multiple applications such as sea, land, sky and space.

4.
Front Genet ; 14: 1104906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359380

RESUMEN

The H-matrix best linear unbiased prediction (HBLUP) method has been widely used in livestock breeding programs. It can integrate all information, including pedigree, genotypes, and phenotypes on both genotyped and non-genotyped individuals into one single evaluation that can provide reliable predictions of breeding values. The existing HBLUP method requires hyper-parameters that should be adequately optimised as otherwise the genomic prediction accuracy may decrease. In this study, we assess the performance of HBLUP using various hyper-parameters such as blending, tuning, and scale factor in simulated and real data on Hanwoo cattle. In both simulated and cattle data, we show that blending is not necessary, indicating that the prediction accuracy decreases when using a blending hyper-parameter <1. The tuning process (adjusting genomic relationships accounting for base allele frequencies) improves prediction accuracy in the simulated data, confirming previous studies, although the improvement is not statistically significant in the Hanwoo cattle data. We also demonstrate that a scale factor, α, which determines the relationship between allele frequency and per-allele effect size, can improve the HBLUP accuracy in both simulated and real data. Our findings suggest that an optimal scale factor should be considered to increase prediction accuracy, in addition to blending and tuning processes, when using HBLUP.

5.
Materials (Basel) ; 16(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176446

RESUMEN

The viscoelastic relaxation spectrum is vital for constitutive models and for insight into the mechanical properties of materials, since, from the relaxation spectrum, other material functions used to describe rheological properties can be uniquely determined. The spectrum is not directly accessible via measurement and must be recovered from relaxation stress or oscillatory shear data. This paper deals with the problem of the recovery of the relaxation time spectrum of linear viscoelastic material from discrete-time noise-corrupted measurements of a relaxation modulus obtained in the stress relaxation test. A two-level identification scheme is proposed. In the lower level, the regularized least-square identification combined with generalized cross-validation is used to find the optimal model with an arbitrary time-scale factor. Next, in the upper level, the optimal time-scale factor is determined to provide the best fit of the relaxation modulus to experiment data. The relaxation time spectrum is approximated by a finite series of power-exponential basis functions. The related model of the relaxation modulus is proved to be given by compact analytical formulas as the products of power of time and the modified Bessel functions of the second kind. The proposed approach merges the technique of an expansion of a function into a series of independent basis functions with the least-squares regularized identification and the optimal choice of the time-scale factor. Optimality conditions, approximation error, convergence, noise robustness and model smoothness are studied analytically. Applicability ranges are numerically examined. These studies have proved that using a developed model and algorithm, it is possible to determine the relaxation spectrum model for a wide class of viscoelastic materials. The model is smoothed and noise robust; small model errors are obtained for the optimal time-scale factors. The complete scheme of the hierarchical computations is outlined, which can be easily implemented in available computing environments.

6.
Micromachines (Basel) ; 13(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36557423

RESUMEN

The moving-base gravimeter is one of the key instruments used for Earth gravity survey. The accuracy of the survey data is closely related to the calibration precision of several key parameters, such as the damping delay time, the drift coefficient, the gravity scale factor, and the measurement accuracy. This paper will introduce the development of the CHZ-II gravimeter system in which a cylindrical sampling mass suspended vertically by a zero-length spring acts as a sensitive probe to measure specific force. Meanwhile, a GNSS (Global Navigation Satellite System) positioning system is employed to monitor the carrier motion and to remove the inertia acceleration. In order to achieve high-precision calibrations for the key parameters, a new calibration method performed along forward and reverse overlapping lines is proposed, which is used to calibrate the above parameters and to estimate the measurement accuracy of the instrument used for a normal gravity survey. The calibration principle and the shipboard calibration data processing method are introduced. The calibration was performed for three moving-base gravimeters and the corresponding results are determined, indicating that the method can significantly improve the accuracy of the parameters. For the CHZ-II gravimeter, the measurement accuracy of the survey is 0.471 mGal (1 mGal = 10-5 m/s2), which improved by 19.5% after applying the calibrated parameters. This method is also practical for use with aviation, marine and even vehicle-carried moving-base gravimeters.

7.
Sensors (Basel) ; 22(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36560378

RESUMEN

When using off-axis digital image correlation (DIC) for non-contact, remote, and multipoint deflection monitoring of engineering structures, accurate calibration of the scale factor (SF), which converts image displacement to physical displacement for each measurement point, is critical to realize high-quality displacement measurement. In this work, based on the distortion-free pinhole imaging model, a generalized SF calibration model is proposed for an off-axis DIC-based video deflectometer. Then, the transversal relationship between the proposed SF calibration method and three commonly used SF calibration methods was discussed. The accuracy of these SF calibration methods was also compared using indoor rigid body translation experiments. It is proved that the proposed method can be degraded to one of the existing calibration methods in most cases, but will provide more accurate results under the following four conditions: (1) the camera's pitch angle is more than 20°, (2) the focal length is more than 25 mm, (3) the pixel size of the camera sensor is more than 5 um, and (4) the image y-coordinate corresponding to the measurement point after deformation is far from the image center.

8.
Micromachines (Basel) ; 13(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36296037

RESUMEN

Because of the non-orthogonal configuration of multi-sensors, the redundant inertial navigation system (INS) has a more complex error model compared with the traditional orthogonal INS, and the complexity of sensors configuration also increases the difficulty of error separation. Based on sufficient analysis of the error principle of redundant IMUs, a generalized high-accuracy calibration modeling method which is suitable for filtering method systematic calibration is summarized in this paper, and it has been applied to an RIMU prototype consisting of four ring laser gyros (RLGs) and four quartz accelerometers. Through the rotational excitation of the three-axis turntable in the laboratory, the high-precision filtering method systematic calibration of the RIMU is achieved, and static navigation and dynamic vehicle test experiments are also carried out. The experimental results reflect that the positioning accuracy can be obviously improved by using this new systematic calibration error model and the validity of this modeling method is also verified.

9.
J Stat Phys ; 187(1): 9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250092

RESUMEN

Based on the recognition of the huge change of the transport properties for diffusion particles in non-static media, we consider a Lévy walk model subjected to an external constant force in non-static media. Since the physical and comoving coordinates of non-static media are related by scale factor, we equivalently transfer the process from physical coordinate into comoving coordinate and derive the master equation governing the probability density function of the position of the particles in comoving coordinate. Utilizing the Hermite orthogonal polynomial expansions, some statistical properties are obtained, including the asymptotic behaviors of the first two moments in both coordinates and kurtosis. For some representative types of non-static media and Lévy walks, the striking and interesting phenomena originating from the interplay between non-static media, external force, and intrinsic stochastic motion are observed. The stationary distribution are also analyzed for some cases through numerical simulations.

10.
Environ Sci Pollut Res Int ; 28(17): 21528-21539, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411286

RESUMEN

Facing the dual pressure of economic development and ecological environmental protection, it is undoubtedly a good strategy to strengthen energy conservation and emission reduction while further increasing carbon sink. The contribution of forest carbon sink is well-known, but the carbon sink function of mariculture is rarely known. Based on the statistics of China's fishery department and the quality assessment method, this paper constructed a preliminary accounting system for the removable carbon sink of mariculture shellfish and algae, and estimated its capacity in China from 2005 to 2017. On this basis, the logarithmic mean Divisia index was used to analyze the effects of structure and scale factors on the removable carbon sink of mariculture shellfish and algae. The results showed that the annual average removable carbon sink of shellfish and algae in China's mariculture reached 92.7 ten thousand tons, and the overall trend was upward. The total removable carbon sink of shellfish was greater than that of algae. Among them, Grassastrea gigas was the main source of removable carbon sink in China's mariculture, followed by Ruditapes philippinarum. The economic value of annual removable carbon sink of mariculture shellfish and algae in China was equivalent to 139-556 million dollars. Furthermore, the scale factor plays a leading role in the removable carbon sink capacity of mariculture in China, while the structure factor plays a minor role.


Asunto(s)
Secuestro de Carbono , Desarrollo Económico , Carbono/análisis , Dióxido de Carbono/análisis , China , Mariscos
11.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443328

RESUMEN

Navigation grade inertial measurement units (IMUs) should be calibrated after Inertial Navigation Systems (INSs) are assembled and be re-calibrated after certain periods of time. The multi-position calibration methods with advantage of not requiring high-precision equipment are widely discussed. However, the existing multi-position calibration methods for IMU are based on the model of linear scale factors. To improve the precision of INS, the nonlinear scale factors should be calibrated accurately. This paper proposes an optimized multi-position calibration method with nonlinear scale factor for IMU, and the optimal calibration motion of IMU has been designed based on the analysis of sensitivity of the cost function to the calibration parameters. Besides, in order to improve the accuracy and robustness of the optimization, an estimation method on initial values is presented to solve the problem of setting initial values for iterative methods. Simulations and experiments show that the proposed method outperforms the calibration method without nonlinear scale factors. The navigation accuracy of INS can be improved by up to 17% in lab conditions and 12% in the moving vehicle experiment, respectively.

12.
Micromachines (Basel) ; 10(4)2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-31013981

RESUMEN

In this paper, a novel temperature compensation method for a dual-mass MEMS gyroscope is proposed based on drive mode vibration characteristic compensation using a temperature variable resistor. Firstly, the drive and sense modes of the gyroscope re analyzed and investigated, and it is found that the scale factor is proportional to the drive mode amplitude controlling reference voltage. Then, the scale factor temperature compensation method is proposed, and a temperature variable resistor is utilized to compensate the drive amplitude working point and make it change with temperature. In addition, the temperature compensation circuit is designed and simulated. After that, the temperature bias drift is compensated in a modular output. The experimental results show that scale factor and bias variation during the temperature range from -40 °C to 60 °C decrease from 3.680% to 1.577% and 3.880% to 1.913%, respectively. In addition, the bias value improves from 103.395 °/s to 22.478 °/s (optimized 78.26%). The bias stability and angular rate walking parameter are also optimized to 45.97% and 16.08%, respectively, which verify the method proposed in this paper.

13.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30544994

RESUMEN

Rotating Accelerometer Gravity Gradiometers (RAGGs) play a significant role in applications such as resource exploration and gravity aided navigation. Scale factor calibration is an essential procedure for RAGG instruments before being used. In this paper, we propose a calibration system for a gravity gradiometer to obtain the scale factor effectively, even when there are mass disturbance surroundings. In this system, four metal spring-based accelerometers with a good consistency are orthogonally assembled onto a rotary table to measure the spatial variation of the gravity gradient. By changing the approaching pattern of the reference gravity gradient excitation object, the calibration results are generated. Experimental results show that the proposed method can efficiently and repetitively detect a gravity gradient excitation mass weighing 260 kg within a range of 1.6 m and the scale factor of RAGG can be obtained as (5.4 ± 0.2) E/µV, which is consistent with the theoretical simulation. Error analyses reveal that the performance of the proposed calibration scheme is mainly limited by positioning error of the excitation and can be improved by applying higher accuracy position rails. Furthermore, the RAGG is expected to perform more efficiently and reliably in field tests in the future.

14.
Sensors (Basel) ; 18(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428580

RESUMEN

RGB-D cameras offer both color and depth images of the surrounding environment, making them an attractive option for robotic and vision applications. This work introduces the BRISK_D algorithm, which efficiently combines Features from Accelerated Segment Test (FAST) and Binary Robust Invariant Scalable Keypoints (BRISK) methods. In the BRISK_D algorithm, the keypoints are detected by the FAST algorithm and the location of the keypoint is refined in the scale and the space. The scale factor of the keypoint is directly computed with the depth information of the image. In the experiment, we have made a detailed comparative analysis of the three algorithms SURF, BRISK and BRISK_D from the aspects of scaling, rotation, perspective and blur. The BRISK_D algorithm combines depth information and has good algorithm performance.

15.
Micromachines (Basel) ; 9(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30424261

RESUMEN

This paper proposes an effective method to calibrate the microelectromechanical systems (MEMS) vibratory gyroscope based on the virtual Coriolis force. This method utilizes a series of voltage signals to simulate the Coriolis force input, and the gyroscope output is monitored to obtain the scale factor characteristics of the gyroscopes. The scale factor and bias parameters of the gyroscope can be calibrated conveniently and efficiently in the sense-mode open loop. The calibration error of the scale factor based on the turntable and the virtual Coriolis force method is only 1.515%, which proves the correction of the method proposed in this paper. Meanwhile, the non-linearity and bias value of the turntable and the virtual Coriolis force method are 742 ppm and 42.04 mV and 3389 ppm and 0.66 mV, respectively.

16.
Sensors (Basel) ; 18(11)2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424573

RESUMEN

Spin rate of a high-speed spinning-rotor gyroscope will make a significant impact on angular rate sensor performances such as the scale factor, resolution, measurement range, and bias stability. This paper presents the spin rate effects on performance indicators of a microelectromechanical systems (MEMS) gyroscope where a free-spinning rotor is electrostatically suspended in an evacuated vacuum cavity and functions as a dual-axis angular rate sensor. Theoretical models of the scale factor and measurement range of such a spinning-rotor gyroscope are derived. The experimental results indicate that the measured scale factors at different settings of the spin rate match well with the theoretical predication. In order to separate the disturbance component of the rotation control loop on the gyroscope output, a testing strategy is proposed by operating the gyroscope at different spin rates. Experimental results on a prototype gyroscope show that the squared drive voltage generated by the rotation control loop is approximately proportional to the noise of the gyroscope output. It was further investigated that an improved performance of such spinning-rotor gyroscopes can be achieved by operating the gyroscope rotor at an optimal spin rate.

17.
Neurosci Bull ; 34(5): 833-841, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29876785

RESUMEN

Positron emission tomography (PET) imaging of functional metabolism has been widely used to investigate functional recovery and to evaluate therapeutic efficacy after stroke. The voxel intensity of a PET image is the most important indicator of cellular activity, but is affected by other factors such as the basal metabolic ratio of each subject. In order to locate dysfunctional regions accurately, intensity normalization by a scale factor is a prerequisite in the data analysis, for which the global mean value is most widely used. However, this is unsuitable for stroke studies. Alternatively, a specified scale factor calculated from a reference region is also used, comprising neither hyper- nor hypo-metabolic voxels. But there is no such recognized reference region for stroke studies. Therefore, we proposed a totally data-driven automatic method for unbiased scale factor generation. This factor was generated iteratively until the residual deviation of two adjacent scale factors was reduced by < 5%. Moreover, both simulated and real stroke data were used for evaluation, and these suggested that our proposed unbiased scale factor has better sensitivity and accuracy for stroke studies.


Asunto(s)
Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Animales , Simulación por Computador , Modelos Animales de Enfermedad , Femenino , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Masculino , Ratas , Ratas Sprague-Dawley
18.
Sensors (Basel) ; 18(4)2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670021

RESUMEN

A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s²).

19.
BMC Oral Health ; 18(1): 25, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466969

RESUMEN

BACKGROUND: Third molar removal surgery is the most frequently performed surgery in the oral and maxillofacial field with a wide range of items in the quantification of postoperative complications. For their measure, in 2014 a previous scale design was presented. The aim of this study was to determine the reliability and validity of a scale designed to measure and quantify postoperative complications in third molar surgery (TMS). METHODS: A cross-sectional study of a measurement model was designed. Sixty-two patients (mean age 20.5 ± 6.6 years; 36 women) underwent TMS in three Chilean hospitals. In the postoperative check-up on the 7th day, a maxillofacial surgeon and a surgical resident performed independent postoperative assessments, applying the scale. A confirmatory factor analysis was conducted to obtain validity, internal consistency, interobserver reliability and a score to categorize the severity of complications using structural equation model analysis. RESULTS: Nine patients (14.5%) had complications. The scale was defined by two components: "Secondary complication" and "Infection" (Cronbach's alpha 0.71; Interobserver reliability 87.7%) and three categories of postoperative complication: "without or mild", "moderate" and "severe". CONCLUSION: This study presents a reliability and validity scale called "Surgical complication assessment scale in TMS".


Asunto(s)
Tercer Molar/cirugía , Complicaciones Posoperatorias/diagnóstico , Extracción Dental/efectos adversos , Estudios Transversales , Análisis Factorial , Femenino , Humanos , Masculino , Variaciones Dependientes del Observador , Complicaciones Posoperatorias/epidemiología , Reproducibilidad de los Resultados , Adulto Joven
20.
J Geod ; 92(8): 833-846, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30956415

RESUMEN

A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA