Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Hazard Mater ; 476: 135131, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39018593

RESUMEN

Extracting clean water from oily wastewater and seawater is one of the effective strategies to alleviate the freshwater crisis. However, achieving both high separation efficiency and excellent salt resistance remain challenges for materials. Herein, a novel methyltrichlorosilane-modified polyvinyl alcohol/cellulose aerogel (MPCA) was prepared by freeze drying, chemical cross-linking, and chemical vapor deposition (CVD) methods. The superwetting MPCA presented an asymmetric structure, in which the small dense pores at the top surface facilitated the efficient separation of water-in-oil (W/O) emulsions and the large pores on the bottom surface were beneficial for brine exchange. The as-prepared superwetting aerogel was suitable for the separation of various W/O emulsions with excellent separation flux (631.9-2368.7 L·m-2·h-1) and outstanding separation efficiency (99.5 %). In addition, MPCA achieved a high evaporation efficiency of 1.39 kg·m-2·h-1 and a satisfactory energy conversion efficiency of 89.7 %. Moreover, the unique asymmetric structure endowed the evaporator excellent salt resistance and could self-dissolve the accumulated salt in 20 min. The as-prepared MPCA could achieve efficient W/O emulsion separation as well as produce freshwater in seawater, providing a new strategy for oily waste seawater purification.

2.
J Colloid Interface Sci ; 675: 515-525, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38986325

RESUMEN

The scarcity of freshwater resources and increasing demand for drinking water have driven the development of durable and sustainable desalination technologies. Although MXene composites have shown promise due to their excellent photothermal conversion and high thermal conductivity, their high hydrophilicity often leads to salt precipitation and low durability. In this study, we present a novel Cellulose (CF)/MXene paper with a Janus hydrophobic/hydrophilic configuration for long-term and efficient solar-driven desalination. The paper features a dual-layer structure, with the upper hydrophobic layer composed of CF/MXene paper exhibiting convexness to serve as a photothermal layer with exceptional salt rejection properties. Simultaneously, the bottom porous layer made of CF acts as an efficient thermal insulation. This unique design effectively minimizes heat loss and facilitates efficient water transportation. The Janus CF/MXene paper demonstrates a high evaporation rate of 1.11 kg m-2h-1 and solar thermal conversion efficiency of 82.52 % under 1 sun irradiation. Importantly, even after 2500 h of operation in a simulated seawater environment, the paper maintains a stable evaporation rate without significant salt deposition and biodegradation due to an antibacterial rate exceeding 90 %. These findings highlight the potential of the Janus CF/MXene paper for scalable manufacturing and practical applications in solar-driven desalination.

3.
Sci Total Environ ; 947: 174602, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986709

RESUMEN

Traditional mining practices not only cause severe environmental issues, but also face the problem of insufficient production capacity of gold to meet its growing demand. The proposed alternative strategies for gold production, such as the extraction of gold from seawater, still keep a formidable challenge due to their strong dependence on adsorbent materials with high capacity, selectivity, and sensitivity, while also needing to meet the demands of being environmentally friendly and cost-effective. In practice, the direct extraction of gold from seawater is limited by its extremely low yield and high energy expenditure. However, if the combination of gold extraction techniques with seawater desalination can substantially reduce the energy consumption, the extraction of gold from seawater will become economical and feasible. In this paper, we evaluate the feasibility of marine gold extraction using reduced graphene oxide membranes (rGOM) during the seawater desalination process. The rGOM can adsorb almost all Au3+ from the solutions with trace concentrations of Au3+ ranging from 10 ppb to 200 ppb. The adsorption quantity is linearly related to the concentration, indicating that the adsorption capacity of rGOM is much higher than the total amount of Au3+ in the solution. Additionally, the rGOM can selectively adsorb 99 % of Au3+ in the mixed solution while hardly adsorbing other common elements in seawater. More importantly, the rGOM exhibits the long-term stability over 30 days when being immersed in the solution, making it directly compatible with the existing seawater desalination processes. These specific properties allow the rGOM to be an ideal candidate for combining the extraction of gold from seawater with seawater desalination processes. Our findings provide a methodology for enhancing the economic efficiency of the extraction of gold from seawater and hold promise for addressing the problem of gold scarcity.

4.
Chemphyschem ; : e202400397, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960874

RESUMEN

Freeze desalination is an appealing method for seawater desalination through freezing seawater. The percentage of ions in the liquid phase, which is termed ion rejection rate, is a critical factor affecting the performance of freeze desalination. Improving the ion rejection rate is an important topic for freeze desalination. In this work, we investigate the effects of electric fields on the ion rejection rate during the freezing of seawater through molecular dynamics simulations.  It is found that the ion rejection rate increases with increasing electric field strength.  The enhanced ion rejection rate is due to the reduction of the energy barrier at the ice-water interface caused by the electric field, which affects the orientation of water molecules and ion-water interactions. However, the electric field hinders the ice growth rate, which affects the productivity of freeze desalination. Nevertheless, the finding in this work offers a new idea to improve the ion rejection rate. Practically, a trade-off needs to be found to optimize the overall performance of freeze desalination.

5.
Macromol Rapid Commun ; : e2400325, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900581

RESUMEN

To overcome the two main obstacles of large-scale application of superspreading material, self assembly is used to prepare superspreading polymer membrane (SPPM) in this work. An amphiphilic SPPM is prepared by capillary force-driven self assembly using PP melt-blown nonwovens and polyvinyl alcohol (PVA). The prepared SPPM has low preparation cost and stable performance since self assembly needs low energy consumption, and the production is thermodynamically stable. By using cryo-electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum and scanning electron microscope with energy dispersive X-ray spectroscopy. It is proved that PVA is successfully assembled on the fiber surface of PP melt-blown nonwovens. The prepared SPPM has excellent spreading performance, the "spreading times" of both water and oil are less than 0.5 s. They showed much superior performance compared to traditional materials when applied in oil-water separation, seawater desalination, and ion separation. This work will definitely promote the development of self assembly, superspreading materials, and related sciences.

6.
Sci Rep ; 14(1): 13997, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886202

RESUMEN

Efficient seawater desalination is an effective way to solve the shortages of fresh water and energy but with limitations of the low fresh water production rate and high cost. Here, a hollow carbon fiber (HCF) wrapped by regular reduced graphene oxide (rGO) wave-like folds (rGO@HCF) is prepared on account of the differences in thermal shrinkage performance between graphene oxide (GO) and willow catkins fiber. Under one sun irradiation (1 kW m-2), the dry and wet surface temperature of the resulting evaporator reached up to 119.1 °C and 61.7 °C, respectively, and the water steam production rate reached 3.42 kg m-2 h-1. Also, for the outdoor experiment, the rGO@HCF exhibits good evaporator performance which reach up 27.8 kg m-2 day-1. Additionally, rGO@HCF also shows good seawater desalination performance and excellent durability for longtime work. DSC results indicate that the evaporation enthalpy of bulk water and adsorbed water decreased from 2503.92 to 1020.54 J g-1. The excellent evaporating performance is mainly attributed to the regular wave-like microstructure surface of the HCF, which can enhance the light absorption, reduced the vaporization enthalpy of the adsorption water. The findings not only introduce a novel approach for agricultural utilization, but also establish a crucial theoretical foundation for the design of regular wave-like microstructures.

7.
Angew Chem Int Ed Engl ; 63(29): e202406113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687257

RESUMEN

Separation membranes with homogeneous charge channels are the mainstream to reject charged mass by forming electrical double layer (EDL). However, the EDL often compresses effective solvent transport space and weakens channel-ion interaction. Here, built-in electric fields (BIEFs) are constructed in lamellar membranes by assembling the heterostructured nanosheets, which contain alternate positively-charged nanodomains and negatively-charged nanodomains. We demonstrate that the BIEFs are perpendicular to horizontal channel and the direction switches alternately, significantly weakening the EDL effect and forces ions to repeatedly collide with channel walls. Thus, highly efficient rejection for charged mass (salts, dyes, and organic acids/bases) and ultrafast water transport are achieved. Moreover, for desalination on four-stage filtration option, salt rejection reaches 99.9 % and water permeance reaches 19.2 L m-2 h-1 bar-1. Such mass transport behavior is quite different from that in homogeneous charge channels. Furthermore, the ion transport behavior in nanochannels is elucidated by validating horizontal projectile motion model.

8.
Small ; : e2400603, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659175

RESUMEN

Solar-driven interfacial evaporation is recognized as a sustainable and effective strategy for desalination to mitigate the freshwater scarcity issue. Nevertheless, the challenges of oil contamination, salt accumulation, and poor long-term stability of the solar desalination process limit its applications. Herein, a 3D biomass-based multifunctional solar aerogel evaporator is developed for water production with fabricated chitosan/lignin (CSL) aerogel as the skeleton, encapsulated with carbonized lignin (CL) particles and Ti3C2TiX (MXene) nanosheets as light-absorbing materials. Benefitting from its super-hydrophilic wettability, interconnected macropore structure, and high broadband light absorption (ca. 95.50%), the prepared CSL-C@MXene-20 mg evaporator exhibited a high and stable water evaporation flux of 2.351 kg m-2 h-1 with an energy conversion efficiency of 88.22% under 1 Sun (1 kW m-2) illumination. The CSL-C@MXene-20 mg evaporator performed excellent salt tolerance and long-term solar vapor generation in a 3.5 wt.% NaCl solution. Also, its super-hydrophilicity and oleophobicity resulted in superior salt resistance and anti-fouling performance in high salinity brine (20 wt.% NaCl) and oily wastewater. This work offers new insight into the manufacture of porous and eco-friendly biomass-based photothermal aerogels for advanced solar-powered seawater desalination and wastewater purification.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38659200

RESUMEN

Solar steam generation (SSG) is a promising technology for the production of freshwater that can help alleviate global water scarcity. Nanostructured metals, known for their localized surface plasmon resonance effect, have generated significant interest, but low-cost metal films with excellent water evaporation properties are challenging. In this work, we present a one-step dealloying route for fabricating self-supporting black nanoporous zinc (NP-Zn) films with a bicontinuous ligament/channel structure, using Al-Zn solid solution alloys as the precursors. The influence of alloy composition on the formation and macro/microstructure of NP-Zn was investigated, and an optimal Al98Zn2 was selected. Additionally, in situ and ex situ characterizations were conducted to unveil the dealloying mechanism of Al98Zn2 and phase/microstructure evolution of NP-Zn during dealloying, including the phase transition of Al(Zn) → Zn, significant volume shrinkage (89.8%), and the development of high porosity (81.3%). The nanoscale ligament/channel structure and high porosity endow the NP-Zn films with good broadband absorption and superior hydrophilicity and, more importantly, give them excellent SSG performance. The NP-Zn2 film displays high evaporation efficiency, superior stability, and good seawater desalination performance. The efficient SSG performance, material abundance, and low cost suggest that NP-Zn films have promising applications in metal-based photothermal materials for SSG.

10.
Nano Lett ; 24(15): 4537-4545, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568783

RESUMEN

An interfacial solar steam generation evaporator for seawater desalination has attracted extensive interest in recent years. Nevertheless, challenges still remain in relatively low evaporation rate, unsatisfactory energy conversion efficiency, and salt accumulation. Herein, we have demonstrated a biomimetic bilayer composite aerogel consisting of bottom hydrophilic and vertically aligned EVOH channels and an upper hydrophobic conical Fe3O4 array. Thanks to the design merits, the 3D Fe3O4/V-EVOH evaporator exhibits a high evaporation rate of ∼2.446 kg m-2 h-1 and an impressive solar energy conversion efficiency of ∼165.5% under 1 sun illumination, which is superior to those of state-of-the-art evaporators reported so far. Moreover, the asymmetrical wettability not only allows the evaporator to self-float on the water but also facilitates the salt ion diffusion in the channels; thus, the evaporator shows no salt crystals on its surface and only a 6% decrease in evaporation performance even after the salt concentration increases from 0 to 10.0 wt %.

11.
Chemosphere ; 358: 142055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641292

RESUMEN

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Asunto(s)
Salinidad , Agua de Mar , Contaminantes Químicos del Agua , Purificación del Agua , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Purificación del Agua/métodos , China , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Sales (Química)/química , Ácidos Ftálicos/análisis , Trihalometanos/análisis
12.
Macromol Rapid Commun ; 45(11): e2300744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480512

RESUMEN

Highly porous light absorbers are fabricated based on polypyrrole (PPy)-coated carbon nanotube (CNT). Carbon nanotube sponge (CNTS) or carbon nanotube array (CNTA) with three-dimensional (3D) network structure is the framework of porous light absorbers. Both PPy@CNTS and PPy@CNTA composites exhibit excellent light absorption of the full solar spectrum. The CNTS and CNTA with porous structures have extremely large effective surface area for light absorption and for water evaporation that has great practical benefit to the solar-driven vapor generation. The PPy layer on CNT sidewalls significantly improves the hydrophilicity of porous CNTS and CNTA. The good wettability of water on CNT sidewalls makes water transport in porous CNT materials highly efficient. The PPy@CNTS and PPy@CNTA light absorbers achieve high water evaporation rates of 3.35 and 3.41 kg m-2 h-1, respectively, under 1-sun radiation. The orientation of nano channels in CNTA-based light absorbers also plays an important role in the solar-driven vapor generation. The water transport and vapor escape are more efficient in CNTA-based light absorbers as compared to the CNTS-based light absorbers due to the relatively short path for the water transport and the vapor escape in CNTA-based light absorbers.


Asunto(s)
Nanotubos de Carbono , Polímeros , Pirroles , Nanotubos de Carbono/química , Polímeros/química , Pirroles/química , Energía Solar , Luz Solar , Porosidad , Agua/química , Propiedades de Superficie , Tamaño de la Partícula
13.
ACS Appl Mater Interfaces ; 16(10): 13060-13070, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38438118

RESUMEN

Hierarchical structure and surface topography play pivotal roles in developing high-performance solar-driven evaporators for clean water production; however, there exists a notable gap in research addressing simultaneous modulation of internal microstructure and surface topography in hydrogels to enhance both solar steam generation performance and desalination efficiency. Herein, anisotropic poly(vinyl alcohol)/MXene composite hydrogels for efficient solar-driven water evaporation and wastewater purification are fabricated using a template-assisted directional freezing approach followed by precise surface wettability modulation. The resultant composite hydrogels exhibit vertically oriented channels that ensure fast water supply during evaporation, and their poly(vinyl alcohol) skeletons can reduce the vaporization enthalpy of the water in the hydrogels. The incorporation of MXene sheets enables efficient solar light absorption and solar-thermal conversion while providing structural reinforcement to the hydrogels. More importantly, the as-created undulating solar-thermal surface, featuring modulated hydrophilic troughs and hydrophobic crests, significantly enhances solar-thermal conversion efficiency, thereby boosting solar evaporation performances. As a result, the fabricated hydrogel-based evaporator exhibits an impressive evaporation rate of 2.55 kg m-2 h-1 under 1 sun irradiation, coupled with long-term durability and desalination stability. Notably, the outstanding mechanical robustness of the hydrogel further enables high portability through a readily achievable process of reversible dehydration/hydration.

14.
Angew Chem Int Ed Engl ; 63(20): e202401766, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477673

RESUMEN

Solar-thermal water evaporation is a promising strategy for clean water production, which needs the development of solar-thermal conversion materials with both high efficiency and high stability. Herein, we reported an ultra-stable cobalt(II)-organic assembly NKU-123 with light-generated radicals, exhibiting superior photothermal conversion efficiency and high stability. Under the irradiation of 808 nm light, the temperature of NKU-123 rapidly increases from 25.5 to 215.1 °C in 6 seconds. The solar water evaporator based on NKU-123 achieves a high solar-thermal water evaporation rate of 1.442 and 1.299 kg m-2 h-1 under 1-sun irradiation with a water evaporation efficiency of 97.8 and 87.9 % for pure water and seawater, respectively. A detailed mechanism study revealed that the formation of light-generated radicals leads to an increase of spin density of NKU-123 for enhancing the photothermal effect, which provides insights into the design of highly efficient photothermal materials.

15.
ChemSusChem ; 17(14): e202400111, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38424000

RESUMEN

Solar-driven interfacial evaporation (SIE) is very promising to solve the issue of fresh water shortage, however, poor salt resistance severely hinders long-term stable SIE and fresh water collection. Here, we report design of superhydrophilic solar evaporators for long-term stable desalination, fresh water collection and salt collection by vertical salt deposition. The evaporators are prepared by sequentially deposition of silicone nanofilaments, polypyrrole and Au nanoparticles on a polyester fabric composed of microfibers. The evaporators feature excellent photothermal effect and ultrafast water transport, due to their unique micro-/nanostructure and superhydrophilicity. As a result, during SIE the salt gradually deposits vertically rather than occupies larger area on the evaporators. Consequently, long-term stable SIE with high evaporation rates of 2.4-2.1 kg m-2 h-1 for 3.5-20 wt % brine in continuous 10 h is achieved under 1 sun illumination. Meanwhile, the loosely deposited salt can be easily collected, realizing zero brine discharge. Moreover, scalable preparation of the evaporator is achieved, which exhibits efficient collection of high quality fresh water (10.08 kg m-2 in 8 h) via SIE desalination under weak natural sunlight (0.46~0.66 sun). This strategy sheds a new light on the design of high-performance solar evaporators and their real-world fresh water collection.

16.
Environ Sci Technol ; 58(8): 3800-3811, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350025

RESUMEN

The growing global water crisis necessitates sustainable desalination solutions. Conventional desalination technologies predominantly confront environmental issues such as high emissions from fossil-fuel-driven processes and challenges in managing brine disposal during the operational stages, emphasizing the need for renewable and environmentally friendly alternatives. This study introduces and assesses a bioinspired, solar-driven osmosis desalination device emulating the natural processes of mangroves with effective contaminant rejection and notable productivity. The bioinspired solar-driven osmosis (BISO) device, integrating osmosis membranes, microporous absorbent paper, and nanoporous ceramic membranes, was evaluated under different conditions. We conducted experiments in both controlled and outdoor settings, simulating seawater with a 3.5 wt % NaCl solution. With a water yield of 1.51 kg m-2 h-1 under standard solar conditions (one sun), the BISO system maintained excellent salt removal and accumulation resistance after up to 8 h of experiments and demonstrated great cavitation resistance even at 58.14 °C. The outdoor test recorded a peak rate of 1.22 kg m-2 h-1 and collected 16.5 mL in 8 h, showing its practical application potential. These results highlight the BISO device's capability to address water scarcity using a sustainable approach, combining bioinspired design with solar power, presenting a viable pathway in renewable-energy-driven desalination technology.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Purificación del Agua/métodos , Agua , Agua de Mar , Ósmosis , Cloruro de Sodio
17.
Carbohydr Polym ; 331: 121859, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388055

RESUMEN

Solar-powered interfacial evaporation is one of the most efficient state-of-the-art technologies for producing clean water via desalination. Herein, we report a novel bio-based nanofibrous foam for high efficiency solar interface evaporation. To this end, a hybrid membrane of cellulose nanofibers/graphene oxide (GO) is first fabricated by electrospinning coupled with in situ layer-by-layer self-assembly technique. After that, the membrane is subjected to a foaming process in an aqueous NaBH4, which effectively transforms the 2D membrane into a 3D foam. This structure can improve the photothermal conversion efficiency and also facilitate the water transport at the gas-water interface. In the meantime, the GO is converted to the reduced GO (rGO) with a higher light absorption efficiency. Finally, one side of the foam is hydrophobically modified via spray-coating with a fluorocarbon resin (FR) to obtain the Janus type 3D foam, namely FR@EC/rGO. The resultant 3D foam combines the functions of solar energy absorption in the upper layer and water pumping capability in the lower layer. It exhibits an extraordinary solar vapor conversion efficiency of 94.2 % and a fast evaporation rate of 1.83 kg m-2 h-1, showing high potential in future seawater desalination.

18.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166126

RESUMEN

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

19.
Environ Sci Pollut Res Int ; 31(9): 14123-14134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267648

RESUMEN

Desalination plays a crucial role in addressing water scarcity and promoting sustainable development. However, the presence of high boron content in seawater poses a significant challenge. This study introduces a progressive freezing-melting method that effectively removes boron while desalinating seawater. The experimental results indicated that salinity and boron rate of removal increased with freezing temperature and decreased with freezing duration. Among the experimental melting methods, ultrasonic melting (UM) and oscillatory melting (OM) were superior to natural melting (NM) for boron removal and desalination, with oscillatory melting proving to be the most effective. Specifically, when seawater was frozen at - 20 °C for 44 h followed by OM of 55% of the ice, salinity and boron removal rates reached 96.79% and 97.60%, respectively. The concentrations of boron and salinity in the treated seawater were only 0.777‰ and 0.149 mg/L. Moreover, the estimated theoretical energy consumption for treating 1 m3 of seawater was calculated to be 5.95 kWh. This study not only contributes to environmental sustainability but also holds significant potential due to its high efficiency in desalination and boron removal.


Asunto(s)
Boro , Purificación del Agua , Congelación , Purificación del Agua/métodos , Agua de Mar , Frío , Salinidad
20.
J Colloid Interface Sci ; 660: 192-202, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38241867

RESUMEN

Interfacial solar steam generation is considered a promising approach to address energy and drinking water shortages. However, designing efficient light-absorbing and photothermal-converting materials remains challenging. In this study, we describe a detailed method for synthesising a three-dimensional (3D) hierarchical oxygen defect-rich WO3/Ag/PbS/Ni foam (termed WO3-x/Ag/PbS/NF) composite to realise efficient exciton separation and enhanced photothermal conversion. The 3D heterogeneous ternary photothermal material combines the individual benefits of WO3-x, Ag and PbS, improving charge transfer and promoting photogenerated electron-hole pairs. This enhances light absorption and energy conversion. Theoretical calculations indicate that the increased photothermal conversion efficiency primarily results from the heterojunction between Ag, WO3-x and PbS, facilitating exciton separation and electron transfer. Consequently, the WO3-x/Ag/PbS/NF solar evaporator exhibits exceptional light absorption (98% within the sunlight spectrum), a high evaporation rate of 1.90 kg m-2h-1 under 1 sun and a light-to-heat conversion efficiency of 94%. The WO3-x/Ag/PbS/NF evaporator also exhibits excellent capabilities in seawater desalination and wastewater treatment. This approach introduces a synergistic concept for creating novel multifunctional light-absorbing materials suitable for various energy-related applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA