Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(3): 1469-1477, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38231151

RESUMEN

The prevalence of plant diseases caused by pathogens such as Xanthomonas campestris pv campestris (Xcc) poses a significant challenge to sustainable agriculture, necessitating the development of effective and eco-friendly disinfection methods. In this study, we investigated the efficacy of electrohydraulic discharge plasma (EHDP) as a promising alternative for disinfection against Xcc, a pathogen responsible for black rot in cruciferous vegetables. Unlike conventional gas-phase plasma, EHDP introduces two pivotal components: gas-liquid interface plasma (GLIP) and its consequential byproduct, plasma-activated water (PAW). While GLIP enables dual-phase production of reactive oxygen and nitrogen species (RONS), PAW is a reservoir of liquid-phase long-lived RONS, thereby enhancing its bactericidal efficacy. In our evaluations, we tested EHDP-induced GLIP and EHDP-induced PAW against Xcc cells in both in vitro (Xcc suspension) and in vivo (Xcc-inoculated cabbage seeds) settings, achieving noteworthy results. Within 15 min, these methods eliminated ∼98% of the Xcc cells in suspension. For in vivo assessments, nontreated seeds exhibited an infection rate of 98%. In contrast, both EHDP treatments showed a significant reduction, with ∼60% fewer seeds infected while maintaining ∼90% germination rate. In addition, the liquid-phase RONS in EHDP-PAW may enhance seed vigor with a faster germination rate within the initial 5 days. Remarkably, around 90% of EHDP-PAW-treated seeds yielded healthy seedlings, indicating dual benefits in bacterial suppression and seed growth stimulation. In contrast, the percentage of healthy seedlings from nontreated, Xcc-inoculated seeds was approximately 70%. Our research demonstrates the feasibility of using eco-friendly EHDP in the seed disinfection process.


Asunto(s)
Líquidos Corporales , Xanthomonas campestris , Desinfección/métodos , Ácido Etidrónico , Semillas/microbiología , Gases
2.
Foods ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36832822

RESUMEN

Concern over microbial contamination limits the adoption of home production of sprouts as a nutritious and sustainable food. Simple, accessible approaches to seed disinfection could support safe home seed sprouting. Here, we quantify bacterial and fungal contamination of seeds of 14 plant cultivars sold for home sprout production and test a range of chemical and physical methods for seed disinfestation appropriate for home use. Most seeds are contaminated with a variety of bacteria and fungi, and those microbes are usually limited to the seed surface. Heat treatments are not effective for seed disinfection because the high temperatures needed to effectively reduce microbial contamination also reduce seed germination. Two chlorine-based chemical disinfectants-dilute household bleach (0.6% sodium hypochlorite) and freshly generated hypochlorous acid (800 ppm chlorine)-were the most effective disinfection agents tested (up to a 5-log reduction in bacteria) that also did not harm seed germination.

3.
Microbiol Res ; 243: 126643, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33227680

RESUMEN

Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/fisiología , Semillas/microbiología , Zea mays/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Germinación , Microbiota , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/crecimiento & desarrollo , Zea mays/microbiología
4.
Plants (Basel) ; 9(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233807

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) is a highly infectious virus, that is becoming a threat to tomato production worldwide. In this work we evaluated the localization of ToBRFV particles in tomato seeds, its seed transmission rate and efficacy of disinfection, and the effects of different thermal- and chemical-based treatments on ToBRFV-infected seeds' germination. Analyses demonstrated that ToBRFV was located in the seed coat, sometime in the endosperm, but never in the embryo; its transmission from infected seeds to plantlets occurs by micro-lesions during the germination. The ToBRFV seed transmission rate was 2.8% in cotyledons and 1.8% in the third true leaf. Regarding the different disinfection treatments, they returned 100% of germination at 14 days post-treatment (dpt), except for the treatment with 2% hydrochloric acid +1.5% sodium hypochlorite for 24 h, for which no seed germinated after 14 dpt. All treatments have the ability to inactivate ToBRFV, but in six out of seven treatments ToBRFV was still detectable by RT-qPCR. These results raise many questions about the correct way to carry out diagnosis at customs. To our knowledge, this is the first study on the effective localization of ToBRFV particles in seeds.

5.
J Food Prot ; 83(5): 779-787, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869255

RESUMEN

ABSTRACT: Antimicrobial seed treatments recommended by Canadian guidance for sprouted vegetable production (2,000 ppm of hypochlorite for 15 to 20 min or 6 to 10% hydrogen peroxide for 10 min at room temperature) are not fully compliant with organic production principles. We investigated the effect of a sequential treatment consisting of a 10-min soak at 50°C in water followed by exposure to a 2.0% H2O2 plus 0.1% AcOH sanitizing solution against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica inoculated onto alfalfa and radish seed. The sequential treatment was as effective as the recommended treatments and could reduce populations of all three species by a minimum of 3 log CFU/g using a reduced (1:2) ratio of seed to sanitizing solution and low concentrations of sanitizers approved for use in organic food production. However, the efficacy of all the treatments examined in this work was considerably reduced by storage of the seed for 4 weeks at either 11 or 75% relative humidity prior to treatment and assessment. None of the treatments could eradicate the target pathogens from seed, irrespective of time elapsed since inoculation. The results of this work suggest that the effect of storage should be considered in the assessment of antimicrobial treatments for sprouting vegetable seed.


Asunto(s)
Desinfección/métodos , Manipulación de Alimentos/métodos , Peróxido de Hidrógeno/farmacología , Medicago sativa , Raphanus , Canadá , Recuento de Colonia Microbiana , Microbiología de Alimentos , Alimentos Orgánicos , Germinación , Medicago sativa/microbiología , Oxidantes/farmacología , Raphanus/microbiología , Semillas
6.
J Sci Food Agric ; 99(7): 3475-3480, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30623440

RESUMEN

BACKGROUND: Seeds harbor different microorganisms on their surfaces that degrade seed quality, thus causing an economic loss. Even though different approaches are available for the disinfection of seed surfaces, there is a need to develop environmentally friendly and sustainable technologies. A bench-scale pulsed electric field (PEF) unit was designed to inactivate microflora of eight seeds after which the resultant vigor of the treated seeds was determined. RESULTS: Significant reductions were obtained in endogenous natural and inoculated pathogenic (Alternaria brassica and Xanthomonas campestris pv. campestris, Drechslera graminea and Fusarium graminearum) microflora of seeds. The survival ratios of total aerobic mesophilic bacteria and of total mold and yeast decreased significantly for winter wheat and barley, parsley, onion, lettuce, tomato, and garden rocket with the PEF treatments of 240 and 960 J. A significant increase in germination ratio was observed for winter wheat and barley, lettuce, and tomato with 960 J. Germination energy increased for parsley with 240 J and for winter wheat and barley, lettuce, tomato, and garden rocket with 960 J. A better root development and seedling were found for winter barley. CONCLUSION: PEFs are a viable option to both disinfect seed surfaces and improve seed vigor. © 2019 Society of Chemical Industry.


Asunto(s)
Desinfección/métodos , Semillas/efectos de la radiación , Alternaria/crecimiento & desarrollo , Alternaria/efectos de la radiación , Desinfección/instrumentación , Fusarium/crecimiento & desarrollo , Fusarium/efectos de la radiación , Germinación , Hordeum/crecimiento & desarrollo , Hordeum/microbiología , Hordeum/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/microbiología , Plantones/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/microbiología , Triticum/crecimiento & desarrollo , Triticum/microbiología , Triticum/efectos de la radiación , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA