Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(33): 21633-21650, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39114876

RESUMEN

Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.

2.
Angew Chem Int Ed Engl ; 63(37): e202408963, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39031735

RESUMEN

Sub-nanoporous membranes with ion selective transport functions are important for energy utilization, environmental remediation, and fundamental bioinspired engineering. Although mono/multivalent ions can be separated by monovalent ion selective membranes (MISMs), the current theory fails to inspire rapid advances in MISMs. Here, we apply transition state theory (TST) by regulating the enthalpy barrier (ΔH) and entropy barrier (ΔS) for designing next-generation monovalent cation exchange membranes (MCEMs) with great improvement in ion selective separation. Using a molecule-absorbed porous material as an interlayer to construct a denser selective layer can achieve a greater absolute value of ΔS for Li+ and Mg2+ transport, greater ΔH for Mg2+ transport and lower ΔH for Li+ transport. This recorded performance with a Li+/Mg2+ perm-selectivity of 25.50 and a Li+ flux of 1.86 mol ⋅ m-2 ⋅ h-1 surpasses the contemporary "upper bound" plot for Li+/Mg2+ separations. Most importantly, our synthesized MCEM also demonstrates excellent operational stability during the selective electrodialysis (S-ED) processes for realizing scalability in practical applications.

3.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709923

RESUMEN

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Asunto(s)
Proteínas 14-3-3 , Dendritas , Cinesinas , Proteínas Serina-Treonina Quinasas , Receptores de Transferrina , Cinesinas/metabolismo , Cinesinas/genética , Proteínas 14-3-3/metabolismo , Dendritas/metabolismo , Fosforilación , Receptores de Transferrina/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Sitios de Unión , Microtúbulos/metabolismo , Ratas , Ratones , Unión Proteica
4.
ACS Nano ; 18(11): 8452-8462, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38427806

RESUMEN

Rampant dendrite formation and serious adverse parasitic reactions induced by migration of dissolved V/Mn cathode ions on Zn anode have hampered the high performance of aqueous zinc-ion batteries (AZIBs). Inspired by the coordination chemistry between functional groups of polymer and electrolyte ions, a freestanding layer consisting of dopamine-functionalized polypyrrole (DA-PPy) nanowires served as a selective ion transport layer at the anode-electrolyte interface to address these two issues, which could simultaneously avoid polarization caused by the introduction of an additional interface. On the one hand, the DA-PPy layer displays excellent zinc ion and charge transfer ability, as well as provides chemical homochanneling for zinc ions at the interface, which endow the DA-PPy layer with properties as a chemical guider and physical barrier for dendrite inhibition. On the other hand, the DA-PPy layer can trap excess transition metal ions fleeing from the cathodes, thus serving as a chemical barrier, preventing the formation of Vx+/Mnx+-passivation on the surface of the zinc anode. Consequently, the AZIBs based on V2O5 and MnO2 cathodes involving the DA-PPy functional layer show a great improvement in the capacity retention.

5.
Macromol Rapid Commun ; 44(16): e2200980, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36915225

RESUMEN

Polymer brushes are attractive as surface coatings for a wide range of applications, from fundamental research to everyday life, and also play important roles in biological systems. How colloids (e.g., functional nanoparticles, proteins, viruses) bind and move across polymer brushes is an important yet under-studied problem. A mean-field theoretical approach is presented to analyze the binding and transport of colloids in planar polymer brushes. The theory explicitly considers the effect of solvent strength on brush conformation and of colloid-polymer affinity on colloid binding and transport. The position-dependent free energy of the colloid insertion into the polymer brush which controls the rate of colloid transport across the brush is derived. It is shown how the properties of the brush can be adjusted for brushes to be highly selective, effectively serving as tuneable gates with respect to colloid size and affinity to the brush-forming polymer. The most important parameter regime simultaneously allowing for high brush permeability and selectivity corresponds to a condition when the repulsive and attractive contributions to the colloid insertion free energy nearly cancel. This theory should be useful to design sensing and purification devices with enhanced selectivity and to better understand mechanisms underpinning the functions of biological polymer brushes.


Asunto(s)
Polímeros , Proteínas , Polímeros/química , Solventes/química , Conformación Molecular , Coloides/química
6.
Small ; 19(18): e2207559, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36725315

RESUMEN

Ion-selective membranes are considered as the promising candidates for osmotic energy harvesting. However, the fabrication of highly perm-selective membrane is the major challenge. Metal-organic frameworks (MOFs) with well-defined nanochannels along functional charged groups show great importance to tackle this problem. Here, a series of dense sodium polystyrene sulfonate (PSS) incorporated MOFs composite membranes (PSS@MOFs) on a porous anodic aluminum oxide (AAO) membrane via in situ anodic electrodeposition process are developed. Benefiting to the novel structural design of the confined Ag layer, PSS@MOFs dense composite membrane with less defects formed. The sulfonated nanochannels of the PSS@MOFs composite membrane provided rapid and selective transport of cations due to the enhanced electrostatic interaction between the permeating ions and MOFs. While osmotic energy conversion, 860 nm thick negatively charged PSS@MOFs composite membrane achieves an ultrahigh cation transfer number of 0.993 and energy conversion efficiency of 48.8% at a 100-fold salinity gradient. Moreover, a large output power of 2.90 µW has been achieved with an ultra-low internal resistance of 999 Ω, employing an effective area of 12.56 mm2 . This work presents a promising strategy to construct a high-performance MOFs-based osmotic energy harvesting system for practical applications.

7.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432842

RESUMEN

Salinity affects the yield and quality of oilseed crops. The effects of a single foliar application of solutions with different concentrations (0, 30, 60 or 90 µM) of melatonin (MEL) to camelina (Camelina sativa) plants grown in soil in a greenhouse and irrigated at four salinity levels (0.5, 4, 8 and 16 dS m-1) were assessed. Increasing salinity decreased leaf chlorophyll and photosynthetic rates, decreased K concentrations and increased Na concentrations in roots and shoots, and increased oxidative marker levels and the activity of protective antioxidant enzymes in leaves. Under severe salinity stress, the MEL90 treatment resulted in increases in chlorophyll, gas exchange attributes, leaf antioxidant enzyme activities, and decreases in leaf oxidative markers and Na. Salinity decreased seed yield, with no seeds being produced at salinities above 8 dS m-1. The MEL90 treatment resulted in increases in seed yield and poly- and mono-unsaturated fatty acid contents and decreases in saturated fatty acid contents. The MEL90 treatment was more effective in alleviating salinity effects than those including lower MEL concentrations. The highest concentrations of K and K/Na ratios were observed with the MEL90 treatment under non-stressed conditions. Data suggest that MEL foliar applications could increase salinity stress tolerance in camelina.

8.
ACS Appl Mater Interfaces ; 14(28): 32657-32664, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786826

RESUMEN

Herein, we exploit the natural tendency of two-dimensional (2D) clay nanoparticles to self-assemble and restrict water permeability in soils to fabricate a first of its kind synthetic, pH-activated, reversible, and tunable colloidal flow gate. To realize this, we studied the effect of the pH level of a suspension of claylike layered double hydroxide (LDH) nanoparticles on the LDH coagulation process. We then packed the LDH into a fixed-bed column and examined the effect of pH on mass transport through the column. We found that the 2D platelike LDH particles coagulate in an edge-to-edge configuration, which renders highly nonisotropic aggregates, pivotal for obstructing the transport of liquid and molecules therein. We showed that the coagulation and flow through the column may be regulated by imposing various pH levels as an external stimulus to affect LDH zeta potential. Hence, this work shows that the flow through a column comprising a 2D particle bed can be regulated in a reversible manner by simply alternating the pH of the wash solution, equilibration time, or gate dimensions. Furthermore, we show that, subject to pH treatment, we may open and close the colloidal gate for the transport of large molecules and provide selective transport thereof.

9.
Methods Mol Biol ; 2457: 393-407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349156

RESUMEN

Plasmodesmata (PD) are channels in the walls of plant cells which enable cell-to-cell information transfer. This includes the selective transport of specific transcription factors that control cell fate during plant development. KNOTTED1 (KN1) homeobox (KNOX) family transcription factors that are essential for the maintenance and function of stem cells in shoot meristems use this trafficking pathway, but its mechanism is largely unknown. Here we describe a forward genetic approach to the identification of regulators of selective KN1 trafficking through PD, using a trichome rescue system that permits simple visual analysis in Arabidopsis leaves. A KN1 trafficking regulator identified in this approach had the capacity to regulate the transport not only of KN1 but also of another mobile regulatory protein, TRANSPARENT TESTA GLABRA1 (TTG1). Our system could be easily adapted to reveal the mechanism underlying the selective transport of additional mobile signals through PD.


Asunto(s)
Arabidopsis , Plasmodesmos , Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Tricomas/genética , Tricomas/metabolismo
10.
ACS Appl Mater Interfaces ; 13(41): 49137-49145, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623797

RESUMEN

Bioinspired artificial nanochannels for molecular and ionic transport have extensive applications. However, it is still a huge challenge to achieve an intelligent transport system with high selectivity/efficiency and controllability. Inspired by glutathione transport across the plasma membrane via redox regulation, we herein designed and fabricated a redox-reactive artificial nanochannel based on the host-guest chemical strategy. The nanochannel platform achieved high selectivity/efficiency for the identification and transmission of glutathione in the confined space. In addition, this nanochannel can switch between the ON and OFF states through the redox reaction. This redox-regulated system can provide a potential application for detection/binding of biological analytes and redox-controlled drug release.


Asunto(s)
Calixarenos/química , Glutatión/metabolismo , Nanoestructuras/química , Compuestos de Amonio Cuaternario/química , Glutatión/análisis , Glutatión/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA