Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140618, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39089036

RESUMEN

This study used Sensomics to examine four previously obtained yogurt aroma type profiles. 14 key aroma-active compounds were identified as significant contributors (p ≤ 0.05) in the four aroma types using gas chromatography-mass spectrometry-olfactometry (GC-MS/O), aroma extract dilution analysis (AEDA), odor activity values (OAV), and aroma recombination and omission experiments. The Sensomics and previous Flavoromics results were compared, showing that Flavoromics identified 10 indicator compounds for distinguishing aroma types. Eight were the same as the key aroma-active compounds identified via Sensomics, namely acetic acid, pentanoic acid, decanoic acid, 3-hydroxy-2-butanone, 2,3-pentanedione, acetaldehyde, δ-decalactone, and dimethyl sulfone. Sensomics revealed a prominent similarity between the categories of key aroma-active compounds of the four aroma types, with a higher sensory contribution. Flavoromics showed less overlapping between the indicator compounds, mainly related to the distinction between the four aroma types. Sensomics and Flavoromics serve distinct research objectives and should be selected according to the study subject.

2.
J Agric Food Chem ; 72(28): 15890-15905, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953212

RESUMEN

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.


Asunto(s)
Fermentación , Aromatizantes , Proteínas de Guisantes , Pisum sativum , Gusto , Humanos , Proteínas de Guisantes/metabolismo , Proteínas de Guisantes/química , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiología , Aromatizantes/metabolismo , Aromatizantes/química , Femenino , Masculino , Adulto , Bebidas/análisis , Bebidas/microbiología
3.
Food Chem ; 460(Pt 1): 140409, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39053281

RESUMEN

HuangYuXiang (HYX) is a colorful and flavorful traditional cuisine in China, which development of organoleptic attributes is a complex process. Flavor sensory attributes was explored through volatilomics, sensomics, macrogenomics, lipidomics, and metabolomics in seven HYXs. Group B demonstrated the highest sensory scores. A total of 41 volatiles were detected, of which 7 were identified as key volatiles. Caulobacteraceae sp., Psychrobacter faecalis, Ralstonia pickettii, Carnobacterium divergens, and Psychrobacter cibarius were representative bacteria in HYXs. A total of 679 lipids (251 differential lipids) and 329 (113 differential metabolites) metabolites were identified. The differential compounds were the main contributors to flavor differences. L-homocitrulline, arg-ser, 4-aminobenzoic acid, arg-gly, sucrose, pyridoxine, D-cyclohexylglycine, PC 21:4/22:6, PC O-15:0/22:5, PC O-20:2/20:5, and FA 18:2 were heavily accumulated under the microbial action, which in turn promoted the formation of aroma and taste substances. The results of this study provide a theoretical basis for the standardized processing of high-quality HYX.

4.
Food Chem ; 458: 140174, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964109

RESUMEN

Fu Brick Tea (FBT) is characterized by Fungus Aroma (FA), which determines the quality of FBT products. However, the aroma constituents and their interactive mechanism for FA remain unclear. In this study, the FBT sample with the optimal FA characteristics was selected from 29 FBTs. Then, 19 components with OAV ≥ 1 were identified as the odorants involved in the FA formation. The aroma recombination test suggested that the FA was potentially produced by the synergistic interplay among the 15 key odorants, including (E,E)-2,4-heptadienal, (E,E)-2,4-nonadienal, (E)-2-nonenal, (E,Z)-2,6-nonadienal, (E)-2-octenal, (E)-ß-ionone, 4-ketoisophorone, dihydroactinidiolide, (E)-ß-damascenone, 1-octen-3-ol, linalool, geraniol, heptanal, hexanal, and phenylacetaldehyde. And, the synergistic effects between them were preliminarily studied by aroma omissions, such as modulatory effects, masking effects, compensatory effects, and novelty effects, ultimately contributing to the FA. In all, this work helps us better understand the formation of the FA and provides a basis for the improvement of FBT production technology.

5.
Food Chem X ; 22: 101367, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756476

RESUMEN

The aroma of Sichuan Xiaoqu Baijiu (SXB) greatly benefits from the use of sorghum as its primary brewing ingredient. Nevertheless, the impact of different sorghum variety on the primary aroma compounds of SXB has not been thoroughly investigated. Gas chromatography-mass spectrometry (GC-MS) in conjunction with headspace solid phase microextraction (HS-SPME) and liquid-liquid extraction (LLE) were employed in this investigation. Using 5 sorghum varieties as raw materials, five different types of SXB were analysed for their aroma compounds using GC-MS, GC-O, AEDA, aroma recombination, and aroma omission. Key aroma compounds of SXB were successfully identified as ethyl acetate, ethyl 2-methylbutyrate, isoamyl acetate, ethyl hexanoate, ethyl heptanoate, ethyl lactate, ethyl octanoate, ethyl decanoate, phenylethyl acetate, ethyl laurate, ethyl palmitate, isoamyl alcohol, phenylethanol, 1,1-diethoxyethane, 3-hydroxy-2- butanone, furfural, and glacial acetic acid. Glacial acetic acid, ethyl acetate, ethyl lactate, phenylethyl acetate, acetoin, phenylethanol, and ethyl caproate were found to be the seven major aroma compounds that had the biggest impact on the variations of the five SXB aroma properties, according to partial least squares regression (PLS-R) analysis. The collinear network analysis also revealed that the largest positive correlation weight was discovered between the protein and furfural content, tannin content and cereal-like aroma profile while the highest negative correlation weight was found between the moisture and acetoin content. This study is a valuable resource for understanding how raw materials control the directional regulation of the sensory quality of the SXB liquor body.

6.
Food Chem X ; 22: 101344, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38595757

RESUMEN

To identify the key odorants in Amomum tsaoko (AT), volatiles in fresh AT (FAT) and dried AT (DAT) were investigated using molecular sensory science. In addition to this, the sensomics approach was used to confirm the presence of the compound in FAT that contributed the most to its aroma profile. A total of 49 odor-active compounds (43 in FAT and 42 in DAT) with flavor dilution (FD) factors ranging from 1 to 6561 were identified, with eucalyptol exhibiting the highest FD factor of 6561. Odorants with FD factors ≥ 27 were quantitated, and 23 and 20 compounds in FAT and DAT, respectively, with odor activity value ≥ 1 were determined as key odorants. Recombination and omission experiment further indicated that (E)-2-dodecenal, geranial, octanal, (E)-2-octenal, (E)-2-decenal, and eucalyptol contributed significantly to the overall aroma profile of FAT. After drying of FAT, the concentrations of aldehydes decreased significantly, whereas those of terpene hydrocarbons increased. Multivariate statistical analysis revealed that 26 FAT and 23 DAT odorants were biomarker compounds.

7.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338309

RESUMEN

Tea infusions are the most consumed beverages in the world after water; their pleasant yet peculiar flavor profile drives consumer choice and acceptance and becomes a fundamental benchmark for the industry. Any qualification method capable of objectifying the product's sensory features effectively supports industrial quality control laboratories in guaranteeing high sample throughputs even without human panel intervention. The current study presents an integrated analytical strategy acting as an Artificial Intelligence decision tool for black tea infusion aroma and taste blueprinting. Key markers validated by sensomics are accurately quantified in a wide dynamic range of concentrations. Thirteen key aromas are quantitatively assessed by standard addition with in-solution solid-phase microextraction sampling followed by GC-MS. On the other hand, nineteen key taste and quality markers are quantified by external standard calibration and LC-UV/DAD. The large dynamic range of concentration for sensory markers is reflected in the selection of seven high-quality teas from different geographical areas (Ceylon, Darjeeling Testa Valley and Castleton, Assam, Yunnan, Azores, and Kenya). The strategy as a sensomics-based expert system predicts teas' sensory features and acts as an AI smelling and taste machine suitable for quality controls.


Asunto(s)
Inteligencia Artificial , Compuestos Orgánicos Volátiles , Humanos , China , , Olfato , Odorantes/análisis , Control de Calidad , Compuestos Orgánicos Volátiles/análisis
8.
Food Chem ; 441: 138301, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176144

RESUMEN

Longjing tea is renowned for its fresh aroma and high value. However, during storage, the emergence of an off-flavor known as "stale odor" can significantly impact the flavor quality and economic benefits of Longjing tea. Yet, the specific volatiles responsible for this stale odor in Longjing tea remain unknown. In this study, Longjing tea samples with varying degrees of stale odor intensity were analyzed using simultaneous distillation extraction coupled with gas chromatography-mass spectrometry (SDE-GC-MS). Through odor activity value (OAV) and fractional omission testing, hexanoic acid and trans-2-nonenal were identified as the primary contributors to the stale odor. Moreover, the concentration of hexanoic acid was found to be valuable in predicting the intensity of the stale odor in Longjing tea. The oxidative degradation of linoleic acid was proved as the generation pathway of stale odor in Longjing tea. These findings provide essential theoretical principles for Longjing tea production and preservation.


Asunto(s)
Caproatos , Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Destilación , Compuestos Orgánicos Volátiles/análisis
9.
Food Chem ; 439: 138176, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091790

RESUMEN

Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-ß-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Vapor , Compuestos Orgánicos Volátiles/análisis
10.
J Agric Food Chem ; 71(47): 18454-18465, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37971953

RESUMEN

Using a quantitative 1H NMR-based approach, molecular interactions between key taste active compounds and high-molecular-weight (HMW) polymers were directly investigated in red wine. Analysis of qualitative and quantitative 1H NMR spectra over time allowed a distinction of three interaction scenarios: (i) no interactions for flavon-3-ol glycosides, ellagitannins, carbohydrates, and amino acids; (ii) changes in the chemical shift to lower frequencies for flavan-3-ols and phenolic acid ethyl esters; and (iii) changes in the chemical shift to higher frequencies for phenolic acids, organic acids, inorganic salts, and alditols. Additionally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), quantitative 1H nuclear magnetic resonance (qHNMR), and high-performance ion chromatography (HPIC), a taste reconstitution model of Primitivo red wine was established for the first time. Human sensory experiments with the new taste recombinant and different HMW fractions demonstrated the influence of the tastant polymer interactions on the sour and salty taste perception of red wine and the intrinsic bitter and astringent taste of the polymers. Further, the influence of the molecular weight cutoff (MWCO) of the polymers and the pH value on the tastant polymer interactions was analyzed. Especially, the HMW fractions 30-50 kDa and >50 kDa caused strong shifts to lower and higher frequencies, respectively. NMR-based interaction studies at different pH values revealed a maximum of interactions at pH 4.0. Based on these results, flavor changes in red wine caused by tastant polymer interactions can be predicted on a molecular level in the future.


Asunto(s)
Percepción del Gusto , Vino , Humanos , Cromatografía Liquida , Vino/análisis , Polímeros/análisis , Espectrometría de Masas en Tándem , Gusto , Espectroscopía de Resonancia Magnética/métodos
11.
Heliyon ; 9(8): e19056, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664728

RESUMEN

Black garlic is a relatively new product that has become very popular in recent years. It is obtained by fermenting raw (white) garlic by the application of heat treatment. The undesirable pungent odor of the white garlic disappears and the black garlic product with a sweet-sour flavor is formed after various reactions during the applied heat process. As a result, black garlic is more preferred and easily consumed by the consumers compared to white garlic. This review aims to summarize the studies on the changes in the odorants during the heat treatment employed in the production of black garlic as well as the factors affecting the changes in the aroma and aroma-active compounds and the use of molecular sensory science (MSS) approach, which has been applied in recent years as a new method for the determination of the aroma compounds. This work revealed that the use of the MSS on the aroma changes in black garlic is quite limited in the literature. Thus, more studies are needed to understand the aroma changes that occur during the formation of black garlic from white garlic in more detail.

12.
Foods ; 12(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628086

RESUMEN

The storage process of Baijiu is an integral part of its production (the quality undergoes substantial changes during the aging process of Baijiu). As the storage time extends, the flavor compounds in Baijiu tend to undergo coordinated transformation, thereby enhancing the quality of Baijiu. Among them, long-chain fatty acid ethyl esters (LCFAEEs) were widely distributed in Baijiu and have been shown to have potential contributions to the quality of Baijiu. However, the current research on LCFAEEs in Baijiu predominantly focuses on the olfactory sensation aspect, while there is a lack of systematic investigation into their influence on taste and evaluation after drinking Baijiu during the aging process. In light of this, the present study investigates the distribution of LCFAEEs in Baijiu over different years. We have combined modern flavor sensory analysis with multivariate chemometrics to comprehensively and objectively explore the influence of LCFAEEs on Baijiu quality. The results demonstrate a significant positive correlation between the concentration of LCFAEEs and the fruity aroma (p < 0.05, r = 0.755) as well as the aged aroma (p < 0.05, r = 0.833) of Baijiu within a specific range; they can effectively reduce the off-flavors and spicy sensation of Baijiu. Furthermore, additional experiments utilizing a single variable suggest that LCFAEEs were crucial factors influencing the flavor of Baijiu, with Ethyl Palmitate (EP) being the most notable LCFAEE that merits further systematic investigation.

13.
Food Microbiol ; 115: 104321, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567631

RESUMEN

Selection of the appropriate yeast strain is one of the most crucial steps in a brewery. Traditionally, yeast strain's abilities during beer fermentation are described according to brewer's experiences. Hence, these descriptions could be inaccurate and strictly based on sensory experiences. In this study, lager beers fermented by four traditional bottom-fermented yeast strains were characterized in detail by sensomic approach. The obtained results revealed that yeast strains can influence most of the sensory-related components in beer, not only esters and higher alcohols, but also carbonyls, amino acids, saccharides, fatty acids, heterocyclic compounds, hop oils, and other hop-related components. By comparison of chemical and sensory characteristics of each studied beer, the theoretical importance of sensory interactions on beer flavor perception was also revealed as the general conception that the beers with similar flavors have also similar chemical profiles (and vice versa) was seemed as not valid.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/metabolismo , Cerveza/análisis , Saccharomyces/metabolismo , Fermentación
14.
Food Chem ; 426: 136649, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352714

RESUMEN

Changes in flavor quality of thermal process flavorings with beef-like odor (TPFB) affected sensory properties upon storage. The changes in sensory quality and odorants of TPFB stored at 50 ℃ for 168 days were evaluated using sensomics approach. The aroma profiles of TPFB gradually changed from stronger meaty notes to stronger burnt and soybean paste-like notes during storage. Forty-two quantified odor-active compounds with flavor dilution ≥ 27 were assessed using the odor activity value concept. Correlation analysis indicated that a decreasing trend of meaty note was closely associated with 5-methyl furfural, dimethyl disulfide, dimethyl trisulfide, furfuryl methyl sulfide and furfuryl thioacetate, which all enriched with time. Omission and addition tests showed that dimethyl disulfide, dimethyl trisulfide and furfuryl thioacetate with the concentration increasing considerably reduced the intensity of meaty note, particularly for dimethyl trisulfide. Therefore, the formation of dimethyl trisulfide should be limited to produce high-quality TPFB during storage.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Bovinos , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Técnicas de Dilución del Indicador , Aromatizantes/análisis
15.
Foods ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36981194

RESUMEN

Long-chain fatty acid ethyl ester (LCFAEEs) is colorless and has a weak wax and cream aroma. It can be used as an intermediate for the synthesis of emulsifiers, and stabilizers and be applied in the production of flavor essence. It is also an important trace component in Baijiu and is attributed to making a contribution to the quality of Baijiu, but its distribution in Baijiu has not been clear, and its influence mechanisms on Baijiu quality have not been systematically studied. Therefore, the distribution of LCFAEEs for Baijiu in different years (2014, 2015, 2018, and 2022), different grades (premium, excellent, and level 1; note: here Baijiu grade classification was based on Chinese standard (GB/T 10781) and enterprise classification standard), and different sun exposure times (0, 6, 12, 20, 30, and 50 days) was uncovered. Thus, in this study, the effect of LCFAEEs on the quality of Baijiu was comprehensively and objectively proven by combining modern flavor sensomics and multicomponent chemometrics. The results showed that with the increase in Baijiu storage time, the concentration of LCFAEEs increased significantly in Baijiu (4.38-196.95 mg/L, p < 0.05). The concentration of LCFAEEs in level 1 Baijiu was significantly higher than that in excellent and premium Baijiu (the concentration ranges of ET, EP, EO, E9, E912, and E91215 were: 0.27-2.31 mg/L, 0.75-47.41 mg/L, 0.93-1.80 mg/L, 0.98-12.87 mg/L, 1.01-27.08 mg/L, and 1.00-1.75 mg/L, respectively, p < 0.05). With the increase in sun exposure time, the concentration of LCFAEEs in the Baijiu first increased significantly and then decreased significantly (4.38-5.95 mg/L, p < 0.05). As the flavor sensomics showed, the concentrations of LCFAEEs in Baijiu bodies were significantly correlated with the Baijiu taste sense (inlet taste, aroma sensation in the mouth), as well as with the evaluation after drinking (maintaining taste) (p < 0.05, r > 0.7). Based on the above, LCFAEEs are critical factors for Baijiu flavor thus, it is essential to explore a suitable concentration of LCFAEEs in Baijiu to make Baijiu's quality more ideal.

16.
Food Res Int ; 163: 112195, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596134

RESUMEN

Fragrant rapeseed oil (FRO) produced by typical roasting process is popular for its characteristic aroma. Accordingly, key aroma-active compounds were characterized in FRO by the Sensomics approach and then correlated to the crucial roasting parameters revealed by aroma profile analysis and hierarchical cluster analysis. Nineteen key odorants in FRO were identified and quantified, among which dimethyl trisulfide (OAV, odor active value, 323, cabbage-like, sulfury) and 4-isothiocyanato-1-butene (OAV, 88, pungent) were the most important aroma-active compounds in FRO and showed first rising and then decline trends as the increased roasting temperature and time. The oil under high-temperature-short time and low-temperature-long time conditions imparted similar aroma profiles. On the basis of sensory evaluation, roasting at 160, 170, 180, 190, and 200 °C should not exceed 50, 40, 30, 30, and 30 min, respectively to satisfy consumer preference. All findings provide a reference on industrial FRO production in terms of not only aroma but also sustainability.


Asunto(s)
Odorantes , Aceite de Brassica napus
17.
Food Chem ; 404(Pt A): 134545, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36252376

RESUMEN

There is an increasing interest in the use of automation in plant production settings. Here, we employed a robotic platform to induce controlled mechanical stimuli (CMS) aiming to improve basil quality. Semi-targeted UHPLC-qToF-MS analysis of organic acids, amino acids, phenolic acids, and phenylpropanoids revealed changes in basil secondary metabolism under CMS, which appear to be associated with changes in taste, as revealed by different means of sensory evaluation (overall liking, check-all-that-apply, and just-about-right analysis). Further network analysis combining metabolomics and sensory data revealed novel links between plant metabolism and sensory quality. Amino acids and organic acids including maleic acid were negatively associated with basil quality, while increased levels of secondary metabolites, particularly linalool glucoside, were associated with improved basil taste. In summary, by combining metabolomics and sensory analysis we reveal the potential of automated CMS on crop production, while also providing new associations between plant metabolism and sensory quality.


Asunto(s)
Ocimum basilicum , Ocimum basilicum/química , Metabolómica , Producción de Cultivos , Gusto , Metabolismo Secundario
18.
J Agric Food Chem ; 70(41): 13367-13378, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121396

RESUMEN

To improve the sensory quality and promote the diversified development of duck meat, the identification and inhibition of key off-odorants in duck broth were comparatively characterized by using the sensomics approach and binary odor mixture analysis. Sensory evaluation results showed that Litsea pungens Hemsl (LPH) could strongly inhibit the duck broth off-odorants. Fifty-four aroma-active compounds with flavor dilution factors ranging from 1 to 2048 were identified in duck broth and duck broth stewed by LPH. Recombination and omission tests confirmed that trans-4,5-epoxy-(E)-2-decenal, (E)-2-octenal, p-cresol, 1-octen-3-ol, and 4-methyloctanoic acid were the key off-odorants in duck broth. Additionally, trans-4,5-epoxy-(E)-2-decenal (9.26 µg/L) and p-cresol (718.91 µg/L) were identified as the key off-odorants in duck meat for the first time. The results of binary odor mixture and off-odorants inhibition curves demonstrated that linalool with the lowest theoretical inhibitory concentration (109.65 µg/L) had the best aroma masking ability among the five off-odorants, followed by geraniol (123.03 µg/L), (Z)-3,7-dimethyl-2,6-octadien-1-ol (301.99 µg/L), (E)-3,7-dimethyl-2,6-octadienal (2187.76 µg/L), and (Z)-3,7-dimethyl-2,6-octadienal (2691.53 µg/L). The spiking test verified that these compounds with the lowest theoretical inhibitory concentrations effectively inhibited the off-odorants of duck broth.


Asunto(s)
Aromatizantes , Odorantes , Animales , Patos , Aromatizantes/química , Odorantes/análisis
19.
Foods ; 11(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36076783

RESUMEN

As a deep-processed product of peach, the aroma characteristics of peach spirit have not been systematically studied, and there has been no research on improving the aroma quality through process improvement. Pervaporation technology was used for the first time in the production of peach spirit instead of distillation, and its critical aroma compounds were analyzed compared with distilled peach spirit. Compared to the distilled peach spirit, pervaporation produced peach spirit presented stronger fruity, honey, and acidic aromas, and lighter cooked-apple aroma. Sixty-two and 65 aroma-active regions were identified in the distilled and pervaporation produced peach spirits, and 40 and 43 of them were quantified. The concentrations of esters, lactones, and acids were significantly higher in the pervaporation produced peach spirit than those in the distilled peach spirit, while terpenoids showed opposite tendency. Both of the overall aromas of distilled and pervaporation produced peach spirits were reconstituted successfully by the compounds with OAV ≥ 1. The omission tests identified 10 and 18 compounds as important aroma compounds for distilled and pervaporation-produced peach spirits, respectively. The differences in the key aroma compounds between the two types of peach spirits explained the differences in the aroma profiles.

20.
Foods ; 11(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954091

RESUMEN

Sourdough bread is highly enjoyed for its exceptional flavor. In contrast to bread crust, which has been investigated intensively, the knowledge on bread crumb is rather fragmentary. In this study, the taste-active compounds of sourdough bread crumb were identified and quantified. By means of recombination experiments and omission tests, the authentic flavor signature of sourdough rye bread crumb was decoded and recreated with ten key tastants and eleven key odorants. Based on the final taste and aroma recombinants, a fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method using stable isotope dilution analysis (SIDA) was developed and validated. Due to prior derivatization using 3-nitrophenylhydrazine (3-NPH), key tastants and odorants in bread crumb could be quantified simultaneously in a single UHPLC run. The identified key flavor compounds in combination with the developed UHPLC-MS/MS method could offer the scientific basis for a knowledge-based optimization of the taste and odor of sourdough bread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA