Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Psychon Bull Rev ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955989

RESUMEN

This study tested the hypothesis that speaking with other voices can influence sensorimotor predictions of one's own voice. Real-time manipulations of auditory feedback were used to drive sensorimotor adaptation in speech, while participants spoke sentences in synchrony with another voice, a task known to induce implicit imitation (phonetic convergence). The acoustic-phonetic properties of the other voice were manipulated between groups, such that convergence with it would either oppose (incongruent group, n = 15) or align with (congruent group, n = 16) speech motor adaptation. As predicted, significantly greater adaptation was seen in the congruent compared to the incongruent group. This suggests the use of shared sensory targets in speech for predicting the sensory outcomes of both the actions of others (speech perception) and the actions of the self (speech production). This finding has important implications for wider theories of shared predictive mechanisms across perception and action, such as active inference.

2.
Front Neural Circuits ; 18: 1431119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011279

RESUMEN

Memory-guided motor shaping is necessary for sensorimotor learning. Vocal learning, such as speech development in human babies and song learning in bird juveniles, begins with the formation of an auditory template by hearing adult voices followed by vocally matching to the memorized template using auditory feedback. In zebra finches, the widely used songbird model system, only males develop individually unique stereotyped songs. The production of normal songs relies on auditory experience of tutor's songs (commonly their father's songs) during a critical period in development that consists of orchestrated auditory and sensorimotor phases. "Auditory templates" of tutor songs are thought to form in the brain to guide later vocal learning, while formation of "motor templates" of own song has been suggested to be necessary for the maintenance of stereotyped adult songs. Where these templates are formed in the brain and how they interact with other brain areas to guide song learning, presumably with template-matching error correction, remains to be clarified. Here, we review and discuss studies on auditory and motor templates in the avian brain. We suggest that distinct auditory and motor template systems exist that switch their functions during development.


Asunto(s)
Percepción Auditiva , Aprendizaje , Vocalización Animal , Animales , Vocalización Animal/fisiología , Aprendizaje/fisiología , Percepción Auditiva/fisiología , Memoria/fisiología , Pinzones/fisiología , Encéfalo/fisiología , Masculino
3.
Cell Rep ; 43(5): 114196, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717902

RESUMEN

Memory recall and guidance are essential for motor skill acquisition. Like humans learning to speak, male zebra finches learn to sing by first memorizing and then matching their vocalization to the tutor's song (TS) during specific developmental periods. Yet, the neuroanatomical substrate supporting auditory-memory-guided sensorimotor learning has remained elusive. Here, using a whole-brain connectome analysis with activity-dependent viral expression, we identified a transient projection into the motor region, HVC, from neuronal ensembles responding to TS in the auditory forebrain, the caudomedial nidopallium (NCM), in juveniles. Virally induced cell death of the juvenile, but not adult, TS-responsive NCM neurons impaired song learning. Moreover, isolation, which delays closure of the sensory, but not the motor, learning period, did not affect the decrease of projections into the HVC from the NCM TS-responsive neurons after the song learning period. Taken together, our results suggest that dynamic axonal pruning may regulate timely auditory-memory-guided vocal learning during development.


Asunto(s)
Pinzones , Aprendizaje , Vocalización Animal , Animales , Vocalización Animal/fisiología , Pinzones/fisiología , Aprendizaje/fisiología , Masculino , Neuronas/fisiología , Conectoma
4.
Front Psychol ; 14: 1234010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901071

RESUMEN

A continuous task was used to determine how the reliability of on-line visual feedback during acquisition impacts motor learning. Participants performed a right hand pointing task of a repeated sequence with a visual cursor that was either reliable, moderately unreliable, or largely unreliable. Delayed retention tests were administered 24 h later, as well as intermanual transfer tests (performed with the left hand). A visuospatial transfer test was performed with the same targets' sequence (same visuospatial configuration) while a motor transfer test was performed with the visual mirror of the targets' sequence (same motor patterns). Results showed that pointing was slower and long-term learning disrupted in the largely unreliable visual cursor condition, compared with the reliable and moderately unreliable conditions. Also, analysis of transfers revealed classically better performance on visuospatial transfer than on motor transfer for the reliable condition. However, here we first show that such difference disappears when the cursor was moderately or largely unreliable. Interestingly, these results indicated a difference in the type of sequence coding, depending on the reliability of the on-line visual feedback. This recourse to mixed coding opens up interesting perspectives, as it is known to promote better learning of motor sequences.

5.
Front Robot AI ; 10: 1193388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779578

RESUMEN

Introduction: Handwriting is a complex task that requires coordination of motor, sensory, cognitive, memory, and linguistic skills to master. The extent these processes are involved depends on the complexity of the handwriting task. Evaluating the difficulty of a handwriting task is a challenging problem since it relies on subjective judgment of experts. Methods: In this paper, we propose a machine learning approach for evaluating the difficulty level of handwriting tasks. We propose two convolutional neural network (CNN) models for single- and multilabel classification where single-label classification is based on the mean of expert evaluation while the multilabel classification predicts the distribution of experts' assessment. The models are trained with a dataset containing 117 spatio-temporal features from the stylus and hand kinematics, which are recorded for all letters of the Arabic alphabet. Results: While single- and multilabel classification models achieve decent accuracy (96% and 88% respectively) using all features, the hand kinematics features do not significantly influence the performance of the models. Discussion: The proposed models are capable of extracting meaningful features from the handwriting samples and predicting their difficulty levels accurately. The proposed approach has the potential to be used to personalize handwriting learning tools and provide automatic evaluation of the quality of handwriting.

6.
BMC Sports Sci Med Rehabil ; 15(1): 138, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864268

RESUMEN

Taping is a common technique used to address proprioceptive deficits in both healthy and patient population groups. Although there is increasing interest in taping to address proprioceptive deficits, little is known about its effects on the kinetic aspects of proprioception as measured by force sense accuracy. To address this gap in the literature, the present systematic review and meta-analysis was conducted to evaluate the impact of taping on force sense accuracy. A search for relevant literature was conducted following PRISMA guidelines across seven databases and one register. Eleven studies with 279 participants were included in the review out of 7362 records. In the between-group analyses, we found a significant improvement in absolute (p < 0.01) and relative (p = 0.01) force sense accuracy with taping compared to no comparator. Likewise, a significant improvement in absolute (p = 0.01) force sense accuracy was also observed with taping compared to placebo tape. In the within group analysis, this reduction in the absolute (p = 0.11) force sense accuracy was not significant. Additional exploratory subgroup analyses revealed between group improvement in force sense accuracy in both healthy individuals and individuals affected by medial epicondylitis. The findings of this meta-analysis should be interpreted with caution due to the limited number of studies and a lack of blinded randomized controlled trials, which may impact the generalizability of the results. More high-quality research is needed to confirm the overall effect of taping on force sense accuracy.

7.
Elife ; 122023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285281

RESUMEN

Prediction errors are differences between expected and actual sensory input and are thought to be key computational signals that drive learning related plasticity. One way that prediction errors could drive learning is by activating neuromodulatory systems to gate plasticity. The catecholaminergic locus coeruleus (LC) is a major neuromodulatory system involved in neuronal plasticity in the cortex. Using two-photon calcium imaging in mice exploring a virtual environment, we found that the activity of LC axons in the cortex correlated with the magnitude of unsigned visuomotor prediction errors. LC response profiles were similar in both motor and visual cortical areas, indicating that LC axons broadcast prediction errors throughout the dorsal cortex. While imaging calcium activity in layer 2/3 of the primary visual cortex, we found that optogenetic stimulation of LC axons facilitated learning of a stimulus-specific suppression of visual responses during locomotion. This plasticity - induced by minutes of LC stimulation - recapitulated the effect of visuomotor learning on a scale that is normally observed during visuomotor development across days. We conclude that prediction errors drive LC activity, and that LC activity facilitates sensorimotor plasticity in the cortex, consistent with a role in modulating learning rates.


Asunto(s)
Locus Coeruleus , Corteza Visual , Ratones , Animales , Locus Coeruleus/fisiología , Calcio , Aprendizaje/fisiología
8.
Front Psychol ; 14: 1180626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008852

RESUMEN

[This corrects the article DOI: 10.3389/fpsyg.2022.935273.].

9.
Expert Rev Med Devices ; 20(1): 35-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36649574

RESUMEN

INTRODUCTION: Robotic-assisted upper limb rehabilitation might improve upper limb recovery in people with multiple sclerosis (PwMS) with moderate-to-severe disability. In the few existing studies, the training effects have been related to the type of intervention, if intensive, repetitive, or task-oriented training might promote neuroplasticity and recovery. Notably, most of these devices operate within a serious game context providing different feedback. Since feedback is a key component of motor control and thus involved in motor and cognitive rehabilitation, clinicians cannot desist from considering the potential contribution of feedback in the upper limb robot-assisted rehabilitation effects. AREA COVERED: In this systematic review, we reported the rehabilitation protocols used in the robot-assisted upper limb training in PwMS to provide state-of-the-art on the role of feedback in robotic-assisted Upper Limb rehabilitation. PubMed, the Cochrane Library, and the Physiotherapy Evidence Database databases were systematically searched from inception to March 2022. After a literature search, the classification systems for feedback and the serious game were applied. EXPERT OPINION: There is a need for sharing standard definitions and components of feedback and serious game in technologically assisted upper limb rehabilitation. Indeed, improving these aspects might further improve the effectiveness of such training in the management of PwMS.


Asunto(s)
Esclerosis Múltiple , Humanos , Retroalimentación , Esclerosis Múltiple/rehabilitación , Recuperación de la Función , Extremidad Superior
10.
Exp Brain Res ; 241(2): 479-493, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36576510

RESUMEN

Prior studies have shown that the accuracy and efficiency of reaching can be improved using novel sensory interfaces to apply task-specific vibrotactile feedback (VTF) during movement. However, those studies have typically evaluated performance after less than 1 h of training using VTF. Here, we tested the effects of extended training using a specific form of vibrotactile cues-supplemental kinesthetic VTF-on the accuracy and temporal efficiency of goal-directed reaching. Healthy young adults performed planar reaching with VTF encoding of the moving hand's instantaneous position, applied to the non-moving arm. We compared target capture errors and movement times before, during, and after approximately 10 h (20 sessions) of training on the VTF-guided reaching task. Initial performance of VTF-guided reaching showed that people were able to use supplemental VTF to improve reaching accuracy. Performance improvements were retained from one training session to the next. After 20 sessions of training, the accuracy and temporal efficiency of VTF-guided reaching were equivalent to or better than reaches performed with only proprioception. However, hand paths during VTF-guided reaching exhibited a persistent strategy where movements were decomposed into discrete sub-movements along the cardinal axes of the VTF display. We also used a dual-task condition to assess the extent to which performance gains in VTF-guided reaching resist dual-task interference. Dual-tasking capability improved over the 20 sessions, such that the primary VTF-guided reaching and a secondary choice reaction time task were performed with increasing concurrency. Thus, VTF-guided reaching is a learnable skill in young adults, who can achieve levels of accuracy and temporal efficiency equaling or exceeding those observed during movements guided only by proprioception. Future studies are warranted to explore learnability in older adults and patients with proprioceptive deficits, who might benefit from using wearable sensory augmentation technologies to enhance control of arm movements.


Asunto(s)
Objetivos , Desempeño Psicomotor , Adulto Joven , Humanos , Anciano , Retroalimentación , Retroalimentación Sensorial , Tiempo de Reacción , Propiocepción , Movimiento
11.
Ann N Y Acad Sci ; 1519(1): 167-172, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398868

RESUMEN

Sensory afferent information, such as auditory and somatosensory feedback while moving, plays a crucial role in both control and learning of motor performance across the lifespan. Music performance requires skillful integration of multimodal sensory information for the production of dexterous movements. However, it has not been understood what roles somatosensory afferent information plays in the acquisition and sophistication of specialized motor skills of musicians across different stages of development. In the present preliminary study, we addressed this issue by using a novel technique with a hand exoskeleton robot that can externally move the fingers of pianists. Short-term exposure to fast and complex finger movements generated by the exoskeleton (i.e., passive movements) increased the maximum rate of repetitive piano keystrokes by the pianists. This indicates that somatosensory inputs derived from the externally generated motions enhanced the quickness of the sequential finger movements in piano performance, even though the pianists did not voluntarily move the fingers. The enhancement of motor skill through passive somatosensory training using the exoskeleton was more pronounced in adolescent pianists than adult pianists. These preliminary results implicate a sensitive period of neuroplasticity of the somatosensory-motor system of trained pianists, which emphasizes the importance of somatosensory-motor training in professional music education during adolescence.


Asunto(s)
Dedos , Música , Humanos , Adulto , Adolescente , Destreza Motora , Movimiento , Aprendizaje
12.
Front Aging Neurosci ; 15: 1325012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161590

RESUMEN

Background: While standing upright, the brain must accurately accommodate for delays between sensory feedback and self-generated motor commands. Natural aging may limit adaptation to sensorimotor delays due to age-related decline in sensory acuity, neuromuscular capacity and cognitive function. This study examined balance learning in young and older adults as they stood with robot-induced sensorimotor delays. Methods: A cohort of community dwelling young (mean = 23.6 years, N = 20) and older adults (mean = 70.1 years, N = 20) participated in this balance learning study. Participants stood on a robotic balance simulator which was used to artificially impose a 250 ms delay into their control of standing. Young and older adults practiced to balance with the imposed delay either with or without visual feedback (i.e., eyes open or closed), resulting in four training groups. We assessed their balance behavior and performance (i.e., variability in postural sway and ability to maintain upright posture) before, during and after training. We further evaluated whether training benefits gained in one visual condition transferred to the untrained condition. Results: All participants, regardless of age or visual training condition, improved their balance performance through training to stand with the imposed delay. Compared to young adults, however, older adults had larger postural oscillations at all stages of the experiments, exhibited less relative learning to balance with the delay and had slower rates of balance improvement. Visual feedback was not required to learn to stand with the imposed delay, but it had a modest effect on the amount of time participants could remain upright. For all groups, balance improvements gained from training in one visual condition transferred to the untrained visual condition. Conclusion: Our study reveals that while advanced age partially impairs balance learning, the older nervous system maintains the ability to recalibrate motor control to stand with initially destabilizing sensorimotor delays under differing visual feedback conditions.

13.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538479

RESUMEN

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Humanos , Encéfalo , Corteza Motora/diagnóstico por imagen , Imagen por Resonancia Magnética , Aprendizaje
14.
Children (Basel) ; 9(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421201

RESUMEN

The past decade has seen an increased interest in the implementation of auditory stimulation (AStim) for managing gait and postural deficits in people with cerebral palsy. Although existing reviews report beneficial effects of AStim on the spatiotemporal and kinematic parameters of gait, there are still numerous limitations that need to be addressed to correctly interpret these results. For instance, existing reviews have failed to characterize the effects of AStim by conducting separate between and within-group meta-analyses, these reviews have not evaluated the influence of AStim on postural outcomes, and nor have included several high-quality existing trials. In this study, we conducted between- and within-group meta-analyses to establish a state of evidence for the influence of AStim on gait and postural outcomes in people with cerebral palsy. We searched the literature according to PRISMA-P guidelines across 10 databases. Of 1414 records, 14 studies, including a total of 325 people with cerebral palsy, met the inclusion criterion. We report a significant enhancement in gait speed, stride length, cadence, and gross motor function (standing and walking) outcomes with AStim compared to conventional physiotherapy. The findings from this analysis reveal the beneficial influence of AStim on the spatiotemporal and kinematic parameters of gait and postural stability in people with cerebral palsy. Furthermore, we discuss the futurized implementation of smart wearables that can deliver person-centred AStim rehabilitation in people with cerebral palsy.

16.
Front Psychol ; 13: 935273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928415

RESUMEN

This conceptual analysis on the role of variance for motor control and learning should be taken as a call to: (a) overcome the classic motor-action controversy by identifying converging lines and mutual synergies in the explanation of motor behavior phenomena, and (b) design more empirical research on low-level operational aspects of motor behavior rather than on high-level theoretical terms. Throughout the paper, claim (a) is exemplified by deploying the well-accepted task-space landscape metaphor. This approach provides an illustration not only of a dynamical sensorimotor system but also of a structure of internal forward models, as they are used in more cognitively rooted frameworks such as the theory of optimal feedback control. Claim (b) is put into practice by, mainly theoretically, substantiating a number of predictions for the role of variance in motor control and learning that can be derived from a convergent perspective. From this standpoint, it becomes obvious that variance is neither generally "good" nor generally "bad" for sensorimotor learning. Rather, the predictions derived suggest that specific forms of variance cause specific changes on permanent performance. In this endeavor, Newell's concept of task-space exploration is identified as a fundamental learning mechanism. Beyond, we highlight further predictions regarding the optimal use of variance for learning from a converging view. These predictions regard, on the one hand, additional learning mechanisms based on the task-space landscape metaphor-namely task-space formation, task-space differentiation and task-space (de-)composition-and, on the other hand, mechanisms of meta-learning that refer to handling noise as well as learning-to-learn and learning-to-adapt. Due to the character of a conceptual-analysis paper, we grant ourselves the right to be highly speculative on some issues. Thus, we would like readers to see our call mainly as an effort to stimulate both a meta-theoretical discussion on chances for convergence between classically separated lines of thought and, on an empirical level, future research on the role of variance in motor control and learning.

17.
Hum Mov Sci ; 84: 102973, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763973

RESUMEN

It has been shown that use-dependent learning can facilitate interlimb transfer of motor learning in neurologically intact individuals. However, it is unknown whether it can also facilitate interlimb transfer in individuals with neurological impairment. In this case study, we examined the effect of use-dependent learning on interlimb transfer of visuomotor adaptation in a person with congenital mirror movements, DB, who showed no interlimb transfer in our previous studies (Bao, Morgan, Lei, & Wang, 2020; Javidialsaadi, & Wang, 2021). DB first performed reaching movements with the right arm repeatedly while adapting to a visuomotor rotation condition with the left arm (training session), and then adapted to the same rotation condition with the right arm (transfer session). DB's right arm performance in the transfer session was significantly better than that observed in our previous studies, indicating interlimb transfer of visuomotor adaptation. The percentage of transfer was over 90%, which is similar to that observed in healthy young adults previously. These findings suggest that interlimb transfer of visuomotor adaptation can occur by involving model-based learning, which is effector independent, and/or use-dependent (or model-free) learning, which is effector specific; and also that the relative contribution of use-dependent learning to interlimb transfer of visuomotor adaptation can be as large as that of model-based learning.


Asunto(s)
Trastornos del Movimiento , Desempeño Psicomotor , Adaptación Fisiológica , Brazo , Lateralidad Funcional , Humanos , Movimiento , Adulto Joven
18.
Front Hum Neurosci ; 16: 858863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664350

RESUMEN

Purpose: The ability to hear ourselves speak has been shown to play an important role in the development and maintenance of fluent and coherent speech. Despite this, little is known about the developing speech motor control system throughout childhood, in particular if and how vocal and articulatory control may differ throughout development. A scoping review was undertaken to identify and describe the full range of studies investigating responses to frequency altered auditory feedback in pediatric populations and their contributions to our understanding of the development of auditory feedback control and sensorimotor learning in childhood and adolescence. Method: Relevant studies were identified through a comprehensive search strategy of six academic databases for studies that included (a) real-time perturbation of frequency in auditory input, (b) an analysis of immediate effects on speech, and (c) participants aged 18 years or younger. Results: Twenty-three articles met inclusion criteria. Across studies, there was a wide variety of designs, outcomes and measures used. Manipulations included fundamental frequency (9 studies), formant frequency (12), frequency centroid of fricatives (1), and both fundamental and formant frequencies (1). Study designs included contrasts across childhood, between children and adults, and between typical, pediatric clinical and adult populations. Measures primarily explored acoustic properties of speech responses (latency, magnitude, and variability). Some studies additionally examined the association of these acoustic responses with clinical measures (e.g., stuttering severity and reading ability), and neural measures using electrophysiology and magnetic resonance imaging. Conclusion: Findings indicated that children above 4 years generally compensated in the opposite direction of the manipulation, however, in several cases not as effectively as adults. Overall, results varied greatly due to the broad range of manipulations and designs used, making generalization challenging. Differences found between age groups in the features of the compensatory vocal responses, latency of responses, vocal variability and perceptual abilities, suggest that maturational changes may be occurring in the speech motor control system, affecting the extent to which auditory feedback is used to modify internal sensorimotor representations. Varied findings suggest vocal control develops prior to articulatory control. Future studies with multiple outcome measures, manipulations, and more expansive age ranges are needed to elucidate findings.

19.
Front Hum Neurosci ; 16: 816197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601906

RESUMEN

The contextual-interference effect is a frequently examined phenomenon in motor skill learning but has not been extensively investigated in motor adaptation. Here, we first tested experimentally if the contextual-interference effect is detectable in force field adaptation regarding retention and spatial transfer, and then fitted state-space models to the data to relate the findings to the "forgetting-and-reconstruction hypothesis". Thirty-two participants were divided into two groups with either a random or a blocked practice schedule. They practiced reaching to four targets and were tested 10 min and 24 h afterward for motor retention and spatial transfer on an interpolation and an extrapolation target, and on targets which were shifted 10 cm away. The adaptation progress was participant-specifically fitted with 4-slow-1-fast state-space models accounting for generalization and set breaks. The blocked group adapted faster (p = 0.007) but did not reach a better adaptation at practice end. We found better retention (10 min), interpolation transfer (10 min), and transfer to shifted targets (10 min and 24 h) for the random group (each p < 0.05). However, no differences were found for retention or for the interpolation target after 24 h. Neither group showed transfer to the extrapolation target. The extended state-space model could replicate the behavioral results with some exceptions. The study shows that the contextual-interference effect is partially detectable in practice, short-term retention, and spatial transfer in force field adaptation; and that state-space models provide explanatory descriptions for the contextual-interference effect in force field adaptation.

20.
J Comp Neurol ; 530(11): 1966-1991, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35344610

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission and cell signaling, which contribute to learning, memory, and the execution of motor skills. Birdsong is a complex learned motor skill in songbirds. Although the existence of 15 nAChR subunits has been predicted in the avian genome, their expression patterns and potential contributions to song learning and production have not been comprehensively investigated. Here, we cloned all the 15 nAChR subunits (ChrnA1-10, B2-4, D, and G) from the zebra finch brain and investigated the mRNA expression patterns in the neural pathways responsible for the learning and production of birdsong during a critical period of song learning. Although there were no detectable hybridization signals for ChrnA1, A6, A9, and A10, the other 11 nAChR subunits were uniquely expressed in one or more major subdivisions in the song nuclei of the songbird brain. Of these 11 subunits, ChrnA3-5, A7, and B2 were differentially regulated in the song nuclei compared with the surrounding anatomically related regions. ChrnA5 was upregulated during the critical period of song learning in the lateral magnocellular nucleus of the anterior nidopallium. Furthermore, single-cell RNA sequencing revealed ChrnA7 and B2 to be the major subunits expressed in neurons of the vocal motor nuclei HVC and robust nucleus of the arcopallium, indicating the potential existence of ChrnA7-homomeric and ChrnB2-heteromeric nAChRs in limited cell populations. These results suggest that relatively limited types of nAChR subunits provide functional contributions to song learning and production in songbirds.


Asunto(s)
Pinzones , Receptores Nicotínicos , Pájaros Cantores , Animales , Encéfalo/metabolismo , Pinzones/fisiología , Vías Nerviosas/fisiología , Receptores Nicotínicos/metabolismo , Pájaros Cantores/fisiología , Vocalización Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA