Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Se Pu ; 42(6): 555-563, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38845516

RESUMEN

Mitochondria perform various metabolic processes that significantly affect cell differentiation, proliferation, signal transduction, and programmed cell death. The disruption of mitochondrial bioenergetic and metabolic functions is closely related to many disorders. The specific isolation and purification of intact, high-purity, and functional mitochondria are central to the understanding of their mechanism of action but remain challenging tasks. In this study, a mitochondrial penetrating peptide (MPP) with the sequence FrFKFrFK(Ac) was used as a mitochondrial recognition motif to construct a peptide-guided affinity separation material. The multiple aromatic phenylalanine (F) residues in this amphiphilic peptide can confer lipophilicity to the mitochondrial membrane, whereas the basic residues (D-arginine and lysine) render the MPP surface positively charged, thereby promoting the binding of negatively charged mitochondria. After the derivatization of the N terminal of MPP with an oligoglycine spacer, the peptide ligands were conjugated to matrix beads (MB) with surface aldehyde functional groups. Peptide functionalization was performed via a condensation reaction between the amino group in the peptide ligand and the aldehyde group on the beads. The generated Schiff bases were reduced, affording stable covalent bonds. The dense and stable functionalization of the beads with the mitochondria-targeting peptides was demonstrated using high performance liquid chromatography (HPLC), zeta potential assay, and scanning electron microscopy (SEM). The immobilization efficiency of the peptide ligands was 1.47 µmol/g, and the surface potential of MB@MPP was 11 mV. MB@MPP was used for the direct isolation of mitochondria after cell homogenization. As observed by SEM, mitochondria with a cross-sectional diameter of 500 nm were efficiently captured on the MB@MPP surface. Because the mitochondrial membrane potential is an important marker of mitochondrial function and the driving force behind the staining of mitochondria with Mito Tracker dyes, the specific binding and separation of fluorescent mitochondria from the cell samples revealed that the proposed MB@MPP-based isolation approach can keep mitochondria intact and retain their functions. Western blot assays were employed to characterize the protein markers of the mitochondria (citrate synthase (CS) and voltage-dependent anion channel protein (VDAC)) and cytoplasmic protein (vinculin), and examine the integrity and purity of the captured mitochondria. The results showed that the lysates released from MB@MPP had high CS and VDAC contents. By contrast, vinculin, which is highly abundant in whole-cell lysates, was barely detected in the lysates from MB@MPP. These results suggest that MB@MPP isolates mitochondria with high affinity, specificity, and antifouling ability by using the targeting peptide as the capture handle. A comparison with a commercial mitochondrial isolation kit demonstrated that MB@MPP can separate mitochondria with higher CS and VDAC abundance and purity. Given the superior separation performance of MB@MPP, the molecular profiles of the isolated mitochondria under stress were subjected to further analysis of their molecular profiles under stress. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established to detect tryptophan (Trp) and riboflavin in the mitochondria. Quantification was performed in multiple-reaction monitoring (MRM) mode. Owing to the high purity of the mitochondria, the Trp and riboflavin contents were determined to be 265 and 0.67 nmol/mg, respectively. The metabolic response of mitochondria to external stimuli was further examined using acadesine, an adenosine 5'-monophosphate (AMP)-activated protein kinase activator with a wide range of metabolic effects, to treat cells. After cell homogenization, MB@MPP was used to separate the mitochondria from the cell samples with and without acadesine treatment, followed by LC-MS/MS analysis. The quantification results demonstrated that acadesine induced a 14% upregulation of Trp content in the mitochondria. By contrast, the riboflavin content decreased to 0.48 nmol/mg, which is 72% of that in untreated mitochondria. The changes in Trp and riboflavin contents could influence their metabolic pathways and, thus, the levels of their metabolites, such as nicotinamide adenine dinucleotide, flavin mononucleotide, and flavin adenine dinucleotide, which are essential coenzymes in mitochondria. Peptide-functionalized affinity microbeads with high affinity and specificity for mitochondria are promising for the efficient isolation of high-quality mitochondria, and offer a useful tool for understanding the complicated functions and dynamics of this unique organelle.


Asunto(s)
Mitocondrias , Péptidos , Mitocondrias/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Cromatografía de Afinidad
2.
Adv Mater ; 36(4): e2301721, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36938788

RESUMEN

Supramolecular polymers have attracted increasing attention in recent years due to their perfect combination of supramolecular chemistry and traditional polymer chemistry. The design and synthesis of macrocycles have driven the rapid development of supramolecular chemistry and polymer science. Pillar[n]arenes, a new generation of macrocyclic compounds possessing unique pillar-shaped structures, nano-sized cavities, multi-functionalized groups, and excellent host-guest complexation abilities, are promising candidates to construct supramolecular polymer materials with enhanced properties and functionalities. This review summarizes recent progress in the design and synthesis of pillararene-based supramolecular polymers (PSPs) and illustrates their diverse applications as adsorption and separation materials. All performances are evaluated and analyzed in terms of efficiency, selectivity, and recyclability. Typically, PSPs can be categorized into three typical types according to their topologies, including linear, cross-linked, and hybrid structures. The advances made in the area of functional supramolecular polymeric adsorbents formed by new pillararene derivatives are also described in detail. Finally, the remaining challenges and future perspectives of PSPs for separation-based materials science are discussed. This review will inspire researchers in different fields and stimulate creative designs of supramolecular polymeric materials based on pillararenes and other macrocycles for effective adsorption and separation of a variety of targets.

3.
Se Pu ; 41(1): 1-13, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36633072

RESUMEN

Since Nobel Laureate K. B. Sharpless first introduced the concept of click chemistry in 2001, such reactions have become a powerful modular synthesis tool. Click chemistry reactions have rapidly expanded into many scientific fields, such as materials and life science, owing to their distinct advantages, which include mild conditions, fast reaction rates, high yields, low by-product generation, and simple separation and purification procedures. Nowadays, click chemistry reactions have become an essential means of designing and preparing separation materials; thus, interest in this synthetic technique has quickly grown. Here, the development of click chemistry and its unique advantages are briefly described firstly. The reports on click chemistry-based chromatographic separation materials published in the past five years are then systematically reviewed, focusing on two major separation fields: column chromatography and membrane chromatography. Meanwhile, recent advances in the separation materials obtained from three common types of click reactions, namely, azido-alkyne, thiol-alkene, and thiol-alkyne, are summarized. Finally, an outlook on the future of click chemistry is provided in developing efficient chromatographic separation materials.


Asunto(s)
Cromatografía , Química Clic , Química Clic/métodos , Alquinos/química , Compuestos de Sulfhidrilo/química
4.
Adv Mater ; 34(46): e2107891, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34894376

RESUMEN

Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.


Asunto(s)
Animales , Humectabilidad , Aceites/química , Colágeno
5.
Small ; 16(35): e2003490, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32697434

RESUMEN

Energy-saving separation and purification of industrially important compounds with similar physical and chemical properties by novel molecular crystalline materials are of great importance and highly desired. Here a newly enlarged version of geminiarene, namely elongated-geminiarene (ElGA), is first designed and synthesized. Taking advantages of both geminiarenes and biphenarenes, ElGA shows great features including scalable synthesis, nanometer-sized cavity, rich blend of conformational features, and excellent solid-state host-guest properties. Significantly, the functional crystalline materials of ElGA are highly effective in the separation of aromatics and cyclic aliphatics, showing a preference for dimethylbenzene over its corresponding hydrogenation products and paving a new avenue for separation science and industry.

6.
J Chromatogr A ; 1476: 53-62, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27863711

RESUMEN

In order to comprehensively understand the influence of coordination of the substituent at 2-position with those at 3- and 6-positions on the properties of chitosan derivatives, a series of chitosan 3,6-bis(arylcarbamate)-2-(amide)s (CACAs) and the related chiral stationary phases (CSPs) were prepared and reported in the present study. Specifically, chitosan was N-acylated with carboxylic acid anhydrides, and then further derivatized with various aryl isocyanates to afford CACAs, from which a class of coated-type CSPs were prepared. When the substituent introduced on the acyl group at 2-position and those on the phenyl group of the carbamates at 3- and 6-positions were fittingly combined, these prepared CACAs based CSPs would exhibit powerful chiral recognition ability, further resulting in a class of promising chiral separation materials with excellent enantioseparation performance. Meanwhile, these newly developed materials with suitable molecular weight also bear a high tolerability towards organic solvents, even including pure tetrahydrofuran, thus broadening their application in enantiomeric separation.


Asunto(s)
Quitosano/análogos & derivados , Cromatografía Líquida de Alta Presión , Acilación , Quitosano/química , Furanos/química , Isocianatos/química , Solventes , Estereoisomerismo
7.
ACS Appl Mater Interfaces ; 8(5): 2881-98, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26785308

RESUMEN

The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA