Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Methods Mol Biol ; 2772: 15-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411803

RESUMEN

The endoplasmic reticulum (ER) forms an extensive network in plant cells. In leaf cells and vacuolated root cells it is mainly restricted to the cortex, whereas in the root meristem the cortical and cytoplasmic ER takes up a large volume throughout the entire cell. Only 3D electron microscopy provides sufficient resolution to understand the spatial organization of the ER in the root. Here we present two protocols for 3D EM imaging of the ER across a range of scales. For large-scale ER structure analysis, we describe selective ER staining with ZIO that allows for automated or semi-automated ER segmentation. For smaller regions of ER, we describe high-pressure freezing, which enables almost instantaneous fixation of plant tissues but without organelle specific staining. These fixation and staining techniques are suitable for a range of imaging modalities, including serial sections, array tomography, serial block face-scanning electron microscopy (SBF-SEM), or focused ion beam (FIB) SEM.


Asunto(s)
Electrones , Retículo Endoplásmico , Microscopía Electrónica , Citosol , Técnicas Histológicas
2.
Aging Cell ; 22(12): e14009, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37960952

RESUMEN

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Asunto(s)
Imagenología Tridimensional , Membranas Asociadas a Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624101

RESUMEN

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Asunto(s)
Mitocondrias , Miocardio , Humanos , Masculino , Ratones , Animales , Mitocondrias/metabolismo , Miocardio/metabolismo , Corazón , Envejecimiento , Transducción de Señal , Proteínas Mitocondriales/metabolismo
4.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37140138

RESUMEN

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Ratones , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Microscopía Electrónica de Rastreo , Células Cultivadas
5.
Planta ; 256(3): 49, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35881249

RESUMEN

MAIN CONCLUSION: High symplastic connectivity via pits was linked to the lignification of the developing walnut shell. With maturation, this network lessened, whereas apoplastic intercellular space remained and became relevant for shell drying. The shell of the walnut (Juglans regia) sclerifies within several weeks. This fast secondary cell wall thickening and lignification of the shell tissue might need metabolites from the supporting husk tissue. To reveal the transport capacity of the walnut shell tissue and its connection to the husk, we visualised the symplastic and apoplastic transport routes during shell development by serial block face-SEM and 3D reconstruction. We found an extensive network of pit channels connecting the cells within the shell tissue, but even more towards the husk tissue. Each pit channel ended in a pit field, which was occupied by multiple plasmodesmata passing through the middle lamella. During shell development, secondary cell wall formation progressed towards the interior of the cell, leaving active pit channels open. In contrast, pit channels, which had no plasmodesmata connection to a neighbouring cell, got filled by cellulose layers from the inner cell wall lamellae. A comparison with other nut species showed that an extended network during sclerification seemed to be linked to high cell wall lignification and that the connectivity between cells got reduced with maturation. In contrast, intercellular spaces between cells remained unchanged during the entire sclerification process, allowing air and water to flow through the walnut shell tissue when mature. The connectivity between inner tissue and environment was essential during shell drying in the last month of nut development to avoid mould formation. The findings highlight how connectivity and transport work in developing walnut shell tissue and how finally in the mature state these structures influence shell mechanics, permeability, conservation and germination.


Asunto(s)
Juglans , Pared Celular/metabolismo , Celulosa/metabolismo , Plasmodesmos/metabolismo
6.
Materials (Basel) ; 15(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629670

RESUMEN

Nanoporous Au has been subjected to serial block face-scanning electron microscopy (SBF-SEM) 3D-characterisation. Corresponding sections have been digitalized and used to evaluate the associated mechanical properties. Our investigation demonstrates that the sample is homogeneous and isotropic. The effective Young's modulus estimated by an analytical multiscale approach agrees remarkably well with the values stated in the literature.

7.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884837

RESUMEN

The human adenovirus type 5 (HAdV5) infects epithelial cells of the upper and lower respiratory tract. The virus causes lysis of infected cells and thus enables spread of progeny virions to neighboring cells for the next round of infection. The mechanism of adenovirus virion egress across the nuclear barrier is not known. The human adenovirus death protein (ADP) facilitates the release of virions from infected cells and has been hypothesized to cause membrane damage. Here, we set out to answer whether ADP does indeed increase nuclear membrane damage. We analyzed the nuclear envelope morphology using a combination of fluorescence and state-of-the-art electron microscopy techniques, including serial block-face scanning electron microscopy and electron cryo-tomography of focused ion beam-milled cells. We report multiple destabilization phenotypes of the nuclear envelope in HAdV5 infection. These include reduction of lamin A/C at the nuclear envelope, large-scale membrane invaginations, alterations in double membrane separation distance and small-scale membrane protrusions. Additionally, we measured increased nuclear membrane permeability and detected nuclear envelope lesions under cryoconditions. Unexpectedly, and in contrast to previous hypotheses, ADP did not have an effect on lamin A/C reduction or nuclear permeability.


Asunto(s)
Proteínas E3 de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Membrana Nuclear/metabolismo , Proteínas E3 de Adenovirus/genética , Línea Celular Tumoral , Humanos , Lamina Tipo A/metabolismo , Microscopía Electrónica de Rastreo , Permeabilidad
8.
J Biomed Mater Res B Appl Biomater ; 109(5): 717-722, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33063467

RESUMEN

Dentine hypersensitivity (DH) is one of the most common dental conditions affecting most adults during their lifetime. Tubule occlusion is a widely accepted method for treating DH. Current in-vitro techniques such as focused ion beam, scanning electron microscopy (SEM), or hydraulic conductance that are used to determine tubule occlusion do not provide the depth of occlusion, are time-consuming, expensive and the volume of dentine tested is limited. The presented study aimed to assess the ability of serial block-face SEM (SBF-SEM) to section dentine, to quantify the number of occluded tubules including the depth of penetration by NovaMin and stannous fluoride (SnF2 ) and to compare mineral density between the control and treated dentine. Results demonstrated that NovaMin provided a better occlusion with 100% of the tubules blocked at the surface compared to 83% for SnF2 . The grayscale value (230.42) was significantly higher (p ≤ 0.05) after treatment with NovaMin compared to SnF2 (222.06) and the control (196.37), indicating increased mineral density and dentine mineralization. SBF-SEM has the potential to be used for large volume analysis of bone-like materials at high resolution with minimal sample preparation over a short period. It can be significantly useful in the development and research of new biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Dentina/química , Vidrio/química , Fluoruros de Estaño/química , Pastas de Dientes , Animales , Bovinos , Sensibilidad de la Dentina , Fluoruros , Técnicas In Vitro , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Fosfatos
9.
Cell Rep ; 26(4): 996-1009.e4, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30655224

RESUMEN

Genetic and biochemical defects of mitochondrial function are a major cause of human disease, but their link to mitochondrial morphology in situ has not been defined. Here, we develop a quantitative three-dimensional approach to map mitochondrial network organization in human muscle at electron microscopy resolution. We establish morphological differences between human and mouse and among patients with mitochondrial DNA (mtDNA) diseases compared to healthy controls. We also define the ultrastructure and prevalence of mitochondrial nanotunnels, which exist as either free-ended or connecting membrane protrusions across non-adjacent mitochondria. A multivariate model integrating mitochondrial volume, morphological complexity, and branching anisotropy computed across individual mitochondria and mitochondrial populations identifies increased proportion of simple mitochondria and nanotunnels as a discriminant signature of mitochondrial stress. Overall, these data define the nature of the mitochondrial network in human muscle, quantify human-mouse differences, and suggest potential morphological markers of mitochondrial dysfunction in human tissues.


Asunto(s)
Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , ADN Mitocondrial/metabolismo , Humanos , Ratones , Ratones Transgénicos , Especificidad de la Especie
10.
Methods Mol Biol ; 1691: 15-21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043666

RESUMEN

The endoplasmic reticulum (ER) forms an extensive network in plant cells. In leaf cells and vacuolated root cells it is mainly restricted to the cortex whereas in the root meristem the cortical and cytoplasmic ER takes up a large volume throughout the entire cell. Only 3D electron microscopy provides sufficient resolution to understand the spatial organization of the ER in the root. However, high contrast staining and optimally ER specific staining is essential. Here we describe a protocol for selective ER staining that allows automated or semiautomated segmentation of the organelle in 3D datasets obtained from serial sections, Array Tomography, Serial Block Face Scanning Electron Microscopy (SBFSEM), or Focused Ion Beam (FIB) SEM.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Células Vegetales
11.
J Struct Biol ; 193(3): 162-171, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26772147

RESUMEN

The human malaria parasite, Plasmodium falciparum, exhibits morphological changes during the blood stage cycle in vertebrate hosts. Here, we used serial block-face scanning electron microscopy (SBF-SEM) to visualize the entire structures of P. falciparum-infected red blood cells (iRBCs) and to examine their morphological and volumetric changes at different stages. During developmental stages, the parasite forms Maurer's clefts and vesicles in the iRBC cytoplasm and knobs on the iRBC surface, and extensively remodels the iRBC structure for proliferation of the parasite. In our observations, the Maurer's clefts and vesicles in the P. falciparum-iRBCs, resembling the so-called tubovesicular network (TVN), were not connected to each other, and continuous membrane networks were not observed between the parasitophorous vacuole membrane (PVM) and the iRBC cytoplasmic membrane. In the volumetric analysis, the iRBC volume initially increased and then decreased to the end of the blood stage cycle. This suggests that it is necessary to absorb a substantial amount of nutrients from outside the iRBC during the initial stage, but to release waste materials from inside the iRBC at the multinucleate stage. Transportation of the materials may be through the iRBC membrane, rather than a special structure formed by the parasite, because there is no direct connection between the iRBC membrane and the parasite. These results provide new insights as to how the malaria parasite grows in the iRBC and remodels iRBC structure during developmental stages; these observation can serve as a baseline for further experiments on the effects of therapeutic agents on malaria.


Asunto(s)
Eritrocitos/ultraestructura , Malaria/parasitología , Microscopía Electrónica de Rastreo , Plasmodium falciparum/ultraestructura , Animales , Citoplasma/parasitología , Citoplasma/ultraestructura , Eritrocitos/parasitología , Humanos , Membranas Intracelulares/parasitología , Membranas Intracelulares/ultraestructura , Malaria/sangre , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad
12.
Wellcome Open Res ; 1: 26, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-28090593

RESUMEN

In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

13.
J Microsc ; 259(2): 155-164, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26139222

RESUMEN

A combination of two-dimensional (2D) and three-dimensional (3D) analyses of tissue volume ultrastructure acquired by serial block face scanning electron microscopy can greatly shorten the time required to obtain quantitative information from big data sets that contain many billions of voxels. Thus, to analyse the number of organelles of a specific type, or the total volume enclosed by a population of organelles within a cell, it is possible to estimate the number density or volume fraction of that organelle using a stereological approach to analyse randomly selected 2D block face views through the cells, and to combine such estimates with precise measurement of 3D cell volumes by delineating the plasma membrane in successive block face images. The validity of such an approach can be easily tested since the entire 3D tissue volume is available in the serial block face scanning electron microscopy data set. We have applied this hybrid 3D/2D technique to determine the number of secretory granules in the endocrine α and ß cells of mouse pancreatic islets of Langerhans, and have been able to estimate the total insulin content of a ß cell.


Asunto(s)
Células Secretoras de Glucagón/ultraestructura , Imagenología Tridimensional , Células Secretoras de Insulina/ultraestructura , Insulina/análisis , Microscopía Electrónica de Rastreo/métodos , Vesículas Secretoras/ultraestructura , Animales , Células Secretoras de Insulina/química , Masculino , Ratones
14.
J Struct Biol ; 189(1): 44-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25448885

RESUMEN

We have applied serial block-face scanning electron microscopy (SBF-SEM) to measure parameters that describe the architecture of pancreatic islets of Langerhans, microscopic endocrine organs that secrete insulin and glucagon for control of blood glucose. By analyzing entire mouse islets, we show that it is possible to determine (1) the distributions of alpha and beta cells, (2) the organization of blood vessels and pericapillary spaces, and (3) the ultrastructure of the individual secretory cells. Our results show that the average volume of a beta cell is nearly twice that of an alpha cell, and the total mitochondrial volume is about four times larger. In contrast, nuclear volumes in the two cell types are found to be approximately equal. Although the cores of alpha and beta secretory granules have similar diameters, the beta granules have prominent halos resulting in overall diameters that are twice those of alpha granules. Visualization of the blood vessels revealed that every secretory cell in the islet is in contact with the pericapillary space, with an average contact area of 9±5% of the cell surface area. Our data show that consistent results can be obtained by analyzing small numbers of islets. Due to the complicated architecture of pancreatic islets, such precision cannot easily be achieved by using TEM of thin sections.


Asunto(s)
Islotes Pancreáticos/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Animales , Imagenología Tridimensional , Islotes Pancreáticos/irrigación sanguínea , Masculino , Ratones , Mitocondrias/ultraestructura
15.
J Struct Biol ; 187(2): 187-193, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24893221

RESUMEN

Cdc48p is a highly conserved cytosolic AAA chaperone that is involved in a wide range of cellular processes. It consists of two ATPase domains (D1 and D2), with regulatory regions at the N- and C-terminals. We have recently shown that Cdc48p regulates mitochondrial morphology, in that a loss of the ATPase activity or positive cooperativity in the D2 domain leads to severe fragmentations and aggregations of mitochondria in the cytoplasm. We have now used serial block-face scanning electron microscopy (SBF-SEM), an advanced three-dimensional (3D) electron microscopic technique to examine the structures and morphological changes of mitochondria in the yeast Saccharomyces cerevisiae. We found that mutants lacking ATPase activity of Cdc48p showed mitochondrial fragmentations and aggregations, without fusion of the outer membrane. This suggests that the ATPase activity of Cdc48p is necessary for fusion of the outer membranes of mitochondria. Our results also show that SBF-SEM has considerable advantages in morphological and quantitative studies on organelles and intracellular structures in entire cells.


Asunto(s)
Adenosina Trifosfatasas/química , Microscopía Electrónica de Rastreo , Mitocondrias/ultraestructura , Proteínas Nucleares/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/metabolismo , Citoplasma/enzimología , Imagenología Tridimensional , Mitocondrias/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mutación , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
16.
Neuroscience ; 251: 75-89, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22561733

RESUMEN

Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.


Asunto(s)
Espinas Dendríticas/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Neurópilo/ultraestructura , Encéfalo/ultraestructura , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA