Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1438821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39387049

RESUMEN

Objective: To explore the pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction (HYD) in treating hyperthyroidism via an analysis integrating network pharmacology, molecular docking, and non-targeted serum metabolomics. Methods: Therapeutic targets of hyperthyroidism were searched through multi-array analyses in the Gene Expression Omnibus (GEO) database. Hub genes were subjected to the construction of a protein-protein interaction (PPI) network, and GO and KEGG enrichment analyses. Targets of active pharmaceutical ingredients (APIs) in HYD and those of hyperthyroidism were intersected to yield hub genes, followed by validations via molecular docking and non-targeted serum metabolomics. Results: 112 hub genes were identified by intersecting APIs of HYD and therapeutic targets of hyperthyroidism. Using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both negative and positive ion polarity modes, 279 compounds of HYD absorbed in the plasma were fingerprinted. Through summarizing data yielded from network pharmacology and non-targeted serum metabolomics, 214 common targets were identified from compounds of HYD absorbed in the plasma and therapeutic targets of hyperthyroidism, including PTPN11, PIK3CD, EGFR, HRAS, PIK3CA, AKT1, SRC, PIK3CB, and PIK3R1. They were mainly enriched in the biological processes of positive regulation of gene expression, positive regulation of MAPK cascade, signal transduction, protein phosphorylation, negative regulation of apoptotic process, positive regulation of protein kinase B signaling and positive regulation of MAP kinase activity; and molecular functions of identical protein binding, protein serine/threonine/tyrosine kinase activity, protein kinase activity, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding and protein binding. A total of 185 signaling pathways enriched in the 214 common targets were associated with cell proliferation and angiogenesis. Conclusion: HYD exerts a pharmacological effect on hyperthyroidism via inhibiting pathological angiogenesis in the thyroid and rebalancing immunity.


Asunto(s)
Medicamentos Herbarios Chinos , Hipertiroidismo , Metabolómica , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Hipertiroidismo/tratamiento farmacológico , Hipertiroidismo/sangre , Hipertiroidismo/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Humanos , Animales , Transducción de Señal/efectos de los fármacos
2.
Phytomedicine ; 135: 156105, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39368337

RESUMEN

BACKGROUND: Long-term use of rhubarb (RH) can cause adverse gastrointestinal reactions (such as diarrhea), whereas RH steaming with wine (PRH) can alleviate RH-induced diarrhea. However, the potential material basis and mechanisms by which wine steaming alleviates diarrhea caused by RH remain unclear. PURPOSE: To reveal the potential material basis and underlying mechanisms of wine steaming in alleviating diarrhea caused by RH from the perspective of small intestinal flora and immune function. METHODS: The major anthraquinone/anthrone components were detected using high-performance liquid chromatography (HPLC). Constipation model mice were replicated using loperamide hydrochloride and were administered RH and PRH for six consecutive weeks. Histopathological observation (duodenum, jejunum, and ileum) was performed using hematoxylin-eosin (HE) staining, and the serum levels of inflammatory cytokines, immunoglobulin G (IgG), and immunoglobulin A (IgA) were examined. CD4+, CD8+, and Treg cells counts in peripheral blood were determined using flow cytometry; The protein expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) was determined using immunohistochemistry (IHC) and western blot (WB). The small intestine contents and feces were analyzed by 16 S rRNA sequencing and the contents of short chain fatty acids (SCFAs) in feces were determined using gas chromatography-mass spectrometry (GC-MS). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the blood absorption compounds and endogenous metabolites. RESULTS: The levels of the major anthraquinone/anthrone components were decreased in PRH. RH and PRH both increased the wet fecal weight at 12 h (WFW-12) and fecal water rate (FWR), alleviated the dry and black fecal morphology, and relieved small intestine injuries in the second week. In the fourth week, although RH and PRH alleviated the abnormal levels of indicators in the model mice (fecal water rate, immune cells percentage, and TLR4/NF-κB expression), minor small intestinal damage was observed. Compared to that at the fourth week, RH and PRH increased the levels of WFW-12, FWR, inflammatory cytokines, and TLR4/NF-κB expression, and decreased the levels of IgG/IgA and immune cells with extended administration (sixth week). Further, damage to the small intestine worsened (severe ileal damage) and different degrees of loose stools were observed in RH- and PRH-administered mice in the sixth week. Compared with those in the control group, the levels of WFW-12, FWR, inflammatory cytokines, TLR4/NF-κB expression, IgG/IgA, and immune cell percentage were significantly different in the RH-H and PRH-H mice at the sixth week (except for CD8+in PRH-H). Further, RH and PRH disturbed the gut microbiota (GM) (Lactobacillus and Dubosiella decreased, Aerococcus and Corynebacterium increased) and obviously reduced the content of SCFAs (acetic acid, butyric acid, and isobutyric acid). However, almost all the results indicated a lower impact of PRH than that of RH. Metabolic pathways mainly involved in glycerophospholipid metabolism were identified along with a total of 21 blood absorption components, including anthraquinones, anthrones, flavanols, and tannins. The correlation analysis showed a positive correlation of pathogenic bacteria (Aerococcus and Corynebacterium) with inflammatory cytokines, TLR4/NF-κB, LysoPC(20:0/0:0), and PE (16:0/20:4(8Z,11Z,14Z,17Z)) and a negative correlation with immune cells and SCFAs (acetic acid and isobutyric acid); however, the opposite results were observed for beneficial bacteria (Lactobacillus and Dubosiella). CONCLUSION: Overall, PRH can alleviate RH-induced diarrhea by recovering the GM imbalance and abnormal levels of GM-mediated SCFAs, alleviating the decrease in cellular immune function and abnormal expression of TLR4/NF-κB, thereby suppressing the release of inflammatory factors, possibly, through its lower content of anthraquinones. This study explored for the first time the processing mechanism of wine steaming in alleviating RH-induced diarrhea from the aspects of small intestinal flora and small intestinal immune function.

3.
Front Nutr ; 11: 1359644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360281

RESUMEN

Background: Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods: We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results: ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion: The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.

4.
Int J Biol Macromol ; : 136380, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389515

RESUMEN

The ameliorating effects and mechanisms of Morchella esculenta polysaccharides (MEP-1) on lipid metabolism were investigated in high-fat diet (HFD) mice. The results showed that MEP-1 intervention significantly reduced serum TC, TG, LDL-C, and inflammatory factors (TNF-α, IL-1ß and IL-6) in HFD mice in a dose-dependent manner, and high-dose (400 mg/kg/d) exhibited the most significant reductive effects. In addition, MEP-1 significantly recovered the gut microbiota disorders caused by HFD, especially decreasing the ratio of Firmicutes and Bacteroidetes (F/B) and increasing the dominant bacterial of Muribaculaceae_genus, Bacteroides, Alistipes and Enterococcus. Moreover, MEP-1 promoted the production of SCFAs and increased the expression levels of Occludin, Claudin and Muc2, also regulated lipid metabolism disorder and inflammation by inhibiting TLR4/MyD88/NF-κB via the gut-liver axis. In addition, serum metabolomic analysis revealed that l-phenylalanine, l-arginine and acetylcholine were significantly upregulated with MEP-1 intervention, and were negatively correlated with blood lipid level, in which l-arginine could activate NO/PPARα/CPT1A pathway to ameliorate lipid metabolism disorders. Such results demonstrated that gut microbiota, amino acid metabolic and insulin secretion pathways might be the important factors that mediated the regulation of MEP-1 in lipid metabolism. The results also provided new evidence and strategies for the application of MEP-1 as functional foods.

5.
Ren Fail ; 46(2): 2409346, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39378112

RESUMEN

This study aimed to identify biomarkers for chronic kidney disease (CKD) by studying serum metabolomics. Serum samples were collected from 194 non-dialysis CKD patients and 317 healthy controls (HC). Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), untargeted metabolomics analysis was conducted. A random forest model was developed and validated in separate sets of HC and CKD patients. The serum metabolomic profiles of patients with chronic kidney disease (CKD) exhibited significant differences compared to healthy controls (HC). A total of 314 metabolites were identified as significantly different, with 179 being upregulated and 135 being downregulated in CKD patients. KEGG enrichment analysis revealed several key pathways, including arginine biosynthesis, phenylalanine metabolism, linoleic acid metabolism, and purine metabolism. The diagnostic efficacy of the classifier was high, with an area under the curve of 1 in the training and validation sets and 0.9435 in the cross-validation set. This study provides comprehensive insights into serum metabolism in non-dialysis CKD patients, highlighting the potential involvement of abnormal biological metabolism in CKD pathogenesis. Exploring metabolites may offer new possibilities for the management of CKD.


Asunto(s)
Biomarcadores , Metabolómica , Insuficiencia Renal Crónica , Espectrometría de Masas en Tándem , Humanos , Insuficiencia Renal Crónica/sangre , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Cromatografía Líquida de Alta Presión , Adulto
6.
Int J Biol Macromol ; 280(Pt 3): 135953, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39322162

RESUMEN

This study investigated the impact of Glycyrrhiza polysaccharides (GPS) on the respiratory health of broilers. Specifically, 240 one-day-old male Arbor Acres (AA) broilers were randomly assigned to two groups: basal diet (CON) and GPS (supplemented with 150 mg/kg of Glycyrrhiza polysaccharides). When compared with the CON group, the GPS group significantly increased the broiler average daily gain, serum immunoglobulin A, immunoglobulin M, immunoglobulin G, antioxidant capacity, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and tracheal messenger RNA (mRNA) expression levels of SOD1, SOD2, and GSH-Px. The GPS group also had a reduced feed conversion ratio, reduced lung IL-1ß and IL-6 levels, and upregulated tracheal mRNA expression of Occludin, Claudin1, and Mucin-2. Additionally, the GPS group had alterations in lung microbial diversity and composition. Transcriptomic and metabolomic analyses revealed the activation of the T cell receptor (TCR) signaling pathway and linoleic acid metabolic pathway in the GPS group. Correlation analysis demonstrated significant associations between differential bacteria, genes, serum metabolites, and phenotypic indicators. In conclusion, Glycyrrhiza polysaccharide supplementation positively influenced the respiratory health of broilers by modulating the lung microbiota, activating the TCR signaling pathway, and affecting the linoleic acid metabolism pathway.

7.
Biomed Chromatogr ; : e6007, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39326894

RESUMEN

Trichosanthes kirilowii-Allium macrostemon (Chinese name Gualou and Xiebai, GLXB), a classical herb pair, has significant clinical efficacy in the treatment of myocardial ischemia (MI). In this study, network pharmacology combined with RNA-seq strategy was employed to predict the targets and pathways of GLXB for MI. GLXB significantly modulated signaling pathways related to the pathology of MI, such as anti-inflammatory and anti-apoptotic signaling pathways such as WNT, PI3K/AKT, and AMPK. GSEA showed that GLXB administration downregulated these key pathways. In addition, Metabolomic analysis demonstrated that GLXB treatment reversed metabolic disorder. Integrative analysis demonstrated three key metabolites (pyruvate, lactate, and palmitate) and three differential genes (Pck1, Cdo1, and Cth) that affected glycolysis or gluconeogenesis and cysteine and methionine metabolism. The results of molecular docking showed that chrysin-7-O-glucuronide and diosmetin-7-O-rutinoside may be the crucial components that exert myocardial protective activity. Western blot showed that GLXB administration reversed the expression levels of Pck1, Cdo1, Cth, Alb, Bcl2, and Ccnd1. This study has elucidated that GLXB could alleviate MI in rats by modulating WNT and PI3K/AKT signaling pathways, thereby reducing inflammation and apoptosis as well as improving energy metabolism.

8.
Microorganisms ; 12(9)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39338576

RESUMEN

Decidualization of the uterine endometrium is a critical process for embryo implantation in mammals, primarily occurring on gestational day 8 in pregnant mice. However, the interplay between the maternal gut microbiome, metabolism, and the uterus at this specific time point remains poorly understood. This study employed a multi-omics approach to investigate the metabolic, gut microbiome, and transcriptomic changes associated with early pregnancy (gestational day 8 (E8)) in mice. Serum metabolomics revealed a distinct metabolic profile at E8 compared to controls, with the differential metabolites primarily enriched in amino acid metabolism pathways. The gut microbial composition showed that E8 mice exhibited higher alpha-diversity and a significant shift in beta-diversity. Specifically, the E8 group displayed a decrease in pathogenic Proteobacteria and an increase in beneficial Bacteroidetes and S24-7 taxa. Transcriptomics identified myriads of distinct genes between the E8 and control mice. The differentially expressed genes were enriched in pathways involved in alanine, aspartate, and glutamate metabolism, PI3K-Akt signaling, and the PPAR signaling pathway. Integrative analysis of the multi-omics data uncovered potential mechanistic relationships among the differential metabolites, gut microbiota, and uterine gene expression changes. Notably, the gene Asns showed strong correlations with specific gut S24-7 and metabolite L-Aspartatic acid, suggesting its potential role in mediating the crosstalk between the maternal environment and embryo development during early pregnancy. These findings provide valuable insights into the complex interplay between the maternal metabolome, the gut microbiome, and the uterine transcriptome in the context of early pregnancy, which may contribute to our understanding of the underlying mechanisms of embryo implantation and development.

9.
Aging (Albany NY) ; 16(18): 12574-12592, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39237304

RESUMEN

Anti-inflammatory and antioxidant effects play crucial roles in the recovery of benign prostatic hyperplasia (BPH). Wenshenqianlie (WSQL) capsule, a typical traditional Chinese medicine formulation combining 14 Chinese herbs, has been reported to exert tonic effects on the kidneys and improve clinical symptoms of BPH. However, its potential antioxidative and anti-inflammatory properties and effects on the improvement of hormone levels have not been reported in depth. In this study, mice were subcutaneously injected with TP (5 mg/kg·d-1) to induce BPH. Forty-eight adult BALB/c male mice were randomly allocated to six groups based on the type of drug administered by gavage: control, BPH, BPH+WSQL (40 and 80 mg/kg·d-1), BPH+finasteride (1 mg/kg·d-1), and WSQL-only treated (80 mg/kg·d-1). We investigated the anti-inflammatory and antioxidant effect and mechanism of WSQL on BPH via histopathological examination, immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting combined with in vivo serum metabolomics, gut microbiomics analysis. WSQL alleviated prostate hyperplasia and reduced prostate-specific antigen, dihydrotestosterone, testosterone, and inflammation levels. Gut microbiomics and serum non-targeted metabolomics determined that the protective effect of WSQL against BPH may be related to the improvement of inflammation and testosterone-related gut microbiota and serum metabolites. Further studies showed that WSQL ameliorated nuclear factor-kappa B, its downstream inflammatory factors, and nuclear factor E2-related factor 2 pathway.


Asunto(s)
Antiinflamatorios , Antioxidantes , Medicamentos Herbarios Chinos , Ratones Endogámicos BALB C , Hiperplasia Prostática , Animales , Masculino , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Ratones , Cápsulas , Próstata/efectos de los fármacos , Próstata/patología , Próstata/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Testosterona/sangre , Modelos Animales de Enfermedad
10.
Front Microbiol ; 15: 1403166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101039

RESUMEN

Background: The gut microbiome plays a key role in the formation of livestock and poultry traits via serum metabolites, and empirical evidence has indicated these traits are sex-linked. Methods: We examined 106 chickens (54 male chickens and 52 female chickens) and analyzed cecal content samples and serum samples by 16S rRNA gene sequencing and non-targeted metabolomics, respectively. Results: The cecal microbiome of female chickens was more stable and more complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were enriched in female chickens. Thirty-seven differential metabolites were identified in positive mode and 13 in negative mode, showing sex differences. Sphingomyelin metabolites possessed the strongest association with cecal microbes, while 11ß-hydroxytestosterone showed a negative correlation with Blautia. Conclusion: These results support the role of sexual dimorphism of the cecal microbiome and metabolome and implicate specific gender factors associated with production performance in chickens.

11.
World J Gastroenterol ; 30(27): 3290-3303, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39086751

RESUMEN

BACKGROUND: The annual incidence of metabolic-associated fatty liver disease (MAFLD) in China has been increasing and is often overlooked owing to its insidious characteristics. Approximately 50% of the patients have a normal weight or are not obese. They are said to have lean-type MAFLD, and few studies of such patients are available. Because MAFLD is associated with abnormal lipid metabolism, lipid-targeted metabolomics was used in this study to provide experimental evidence for early diagnosis and pathogenesis. AIM: To investigate the serum fatty-acid metabolic characteristics in lean-type MAFLD patients using targeted serum metabolomic technology. METHODS: Between January and June 2022, serum samples were collected from MAFLD patients and healthy individuals who were treated at Shanghai Putuo District Central Hospital for serum metabolomics analysis. Principal component analysis and orthogonal partial least squares-discriminant analysis models were developed, and univariate analysis was used to screen for biomarkers of lean-type MAFLD and analyze metabolic pathways. UPLC-Q-Orbitrap/MS content determination was used to determine serum palmitic acid (PA), oleic acid (OA), linoleic acid (LA), and arachidonic acid (AA) levels in lean-type MAFLD patients. RESULTS: Urea nitrogen and uric acid levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.05). Alanine transaminase and cholinesterase levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.01). The expression of high-density lipoprotein and apolipoprotein A-1 were lower in lean-type MAFLD patients than in healthy individuals (P < 0.05) and the expression of triglycerides and fasting blood glucose were increased (P < 0.01). A total of 65 biomarkers that affected the synthesis and metabolism of fatty acids were found with P < 0.05 and variable importance in projection > 1". The levels of PA, OA, LA, and AA were significantly increased compared with healthy individuals. CONCLUSION: The metabolic profiles of lean-type MAFLD patients and healthy participants differed significantly, yielding 65 identified biomarkers. PA, OA, LA, and AA exhibited the most significant changes, offering valuable clinical guidance for prevention and treatment of lean-type MAFLD.


Asunto(s)
Biomarcadores , Ácidos Grasos , Metabolómica , Enfermedad del Hígado Graso no Alcohólico , Humanos , Metabolómica/métodos , Masculino , Femenino , Persona de Mediana Edad , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Biomarcadores/sangre , Adulto , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , China/epidemiología , Metabolismo de los Lípidos , Estudios de Casos y Controles , Delgadez/sangre , Delgadez/diagnóstico
12.
Eur J Neurosci ; 60(7): 5487-5504, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39205434

RESUMEN

While it is generally known that metabolic disorders and circadian dysfunction are intertwined, how the two systems affect each other is not well understood, nor are the genetic factors that might exacerbate this pathological interaction. Blood chemistry is profoundly changed in metabolic disorders, and we have previously shown that serum factors change cellular clock properties. To investigate if circulating factors altered in metabolic disorders have circadian modifying effects, and whether these effects are of genetic origin, we measured circadian rhythms in U2OS cell in the presence of serum collected from diabetic, obese or control subjects. We observed that circadian period lengthening in U2OS cells was associated with serum chemistry that is characteristic of insulin resistance. Characterizing the genetic variants that altered circadian period length by genome-wide association analysis, we found that one of the top variants mapped to the E3 ubiquitin ligase MARCH1 involved in insulin sensitivity. Confirming our data, the serum circadian modifying variants were also enriched in type 2 diabetes and chronotype variants identified in the UK Biobank cohort. Finally, to identify serum factors that might be involved in period lengthening, we performed detailed metabolomics and found that the circadian modifying variants are particularly associated with branched chain amino acids, whose levels are known to correlate with diabetes and insulin resistance. Overall, our multi-omics data showed comprehensively that systemic factors serve as a path through which metabolic disorders influence circadian system, and these can be examined in human populations directly by simple cellular assays in common cultured cells.


Asunto(s)
Ritmo Circadiano , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Ritmo Circadiano/fisiología , Masculino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Metabolómica/métodos , Línea Celular Tumoral , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Obesidad/sangre , Obesidad/genética , Adulto , Multiómica
13.
Poult Sci ; 103(11): 104055, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39190992

RESUMEN

Animal aggression is one of the most conserved behaviors. Excessive and inappropriate aggression was a serious social concern across species. After long-term selection under strict stress conditions, Henan gamecock serves as a good model for studying aggressive behavior. In this research, we constructed a Henan game chicken backcross population containing 25% Rhode Island Red (RIR), and conducted brain transcriptomics and serum metabolomics analyses on Henan gamecock (HGR) through its comparison with its female encounters (HGH) and the male backcross birds (BGR). The study revealed that seven differential metabolites in serum and 172 differentially expressed genes in the brain were commonly shared in both HGR vs. HGH and HGR vs. BGR comparisons. They exhibited the same patterns of modulation in Henan gamecocks, following either HGH < HGR > BGR or HGH > HGR < BGR style. Therein, some neurological genes involving in serotonergic and dopaminergic signaling were upregulated, while the levels of many genes related with neuro-immune function were decreased in Henan gamecock. In addition, many unknown genes specifically or highly expressed in the brain of the Henan gamecock were identified. These genes are potentially key candidates for enhancing the bird's aggression. Multi-omics joint analysis revealed that tyrosine metabolism and neuroactive ligand-receptor interaction were commonly affected. Overall, our results propose that the aggressiveness of Henan gamecocks can be heightened by the activation of the serotonergic-dopaminergic metabolic process in the brain, which concurrently impairs the neuroimmune system. Further research is needed to identify the function of these unknown genes on the bird's aggressive behavior.


Asunto(s)
Agresión , Pollos , Serotonina , Animales , Agresión/fisiología , Pollos/fisiología , Pollos/genética , Serotonina/metabolismo , Femenino , Masculino , Transducción de Señal , Encéfalo/metabolismo , Encéfalo/fisiología , Dopamina/metabolismo , Transcriptoma , Neuroinmunomodulación/fisiología , Conducta Animal/fisiología
14.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062797

RESUMEN

The role of induction chemotherapy (iCHT) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is still to be established due to high toxicity and variable response rates. The aim of this retrospective study is to use NMR-based serum metabolomics to predict the response rates to iCHT from the pretreatment samples. The studied group consisted of 46 LA-HNSCC patients treated with iCHT. The response to the treatment was evaluated by the clinical, fiberoptic, and radiological examinations made before and after iCHT. The proton nuclear magnetic resonance (1H NMR) serum spectra of the samples collected before iCHT were acquired with a 400 MHz spectrometer and were analyzed using multivariate and univariate statistical methods. A significant multivariate model was obtained only for the male patients. The treatment-responsive men with >75% primary tumor regression after iCHT showed pretreatment elevated levels of isoleucine, alanine, glycine, tyrosine, N-acetylcysteine, and the lipid compounds, as well as decreased levels of acetate, glutamate, formate, and ketone bodies compared to those who did not respond (regression of the primary tumor <75%). The results indicate that the nutritional status, capacity of the immune system, and the efficiency of metabolism related to protein synthesis may be prognostic factors for the response to induction chemotherapy in male HNSCC patients. However, larger studies are required that would validate the findings and could contribute to the development of more personalized treatment protocols for HNSCC patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Quimioterapia de Inducción , Metabolómica , Humanos , Masculino , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/sangre , Persona de Mediana Edad , Metabolómica/métodos , Femenino , Anciano , Adulto , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/sangre , Espectroscopía de Resonancia Magnética/métodos , Pronóstico , Metaboloma , Biomarcadores de Tumor/sangre , Resultado del Tratamiento
15.
J Tradit Complement Med ; 14(4): 456-466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035686

RESUMEN

Background and aim: Interest in the safety of herbal medicine is growing rapidly regarding knowledge and challenges in natural products. Hence, this study aimed to reveal the toxicological profile of Ardisia elliptica, a traditional medicinal plant used in the treatment of various illnesses. Experimental procedure: Acute toxicity study was performed on female and male Sprague Dawley rats with a single oral administration of 2000 mg/kg BW of 70% ethanolic A. elliptica leaf extract, using a combination of conventional investigations and 1H-NMR-based metabolomics approaches. Results: Physical, hematological, biochemical, and histopathological assessments demonstrated the usual rat profile, with no mortality and delayed toxicity 14 days after administration. 1H NMR serum metabolomics depicted similar metabolites between normal and treated groups. Nevertheless, 1H NMR of urinary metabolomics revealed perturbation in carbohydrate, amino acid, and energy metabolism within 24h after extract administration, while no accumulation of toxic biomarkers in the collected biological fluids on Day 14. A minor gender-based difference revealed the influence of sex hormones and different energy expenditure on response to extract treatment. Conclusion: This study suggested that 2000 mg/kg BW of 70% ethanolic A. elliptica leaf extract is considered as safe for consumption and offered a comprehensive overview of the response of physiological and metabolic aspects applicable to food and herbal product development.

16.
Nutrients ; 16(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38999758

RESUMEN

Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.


Asunto(s)
Cobre , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones , Cobre/sangre , Hígado/metabolismo , Metabolismo de los Lípidos , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Probióticos/administración & dosificación , Probióticos/farmacología , Metabolómica , Lactobacillus plantarum , Lipidómica , Multiómica
17.
J Pharm Biomed Anal ; 249: 116367, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029356

RESUMEN

Angelica sinensis (Oliv.) Diels (AS) is a commonly used herbal medicine and culinary spice known for its gastrointestinal protective properties. Angelica sinensis oil (AO) is the main bioactive component of AS. However, the therapeutic effects and mechanisms of AO on the gastrointestinal tract remain unclear. In this study, we aim to investigated the potential of AO in restoring gut microbiota disorder and metabolic disruptions associated with ulcerative colitis (UC). A systematic chemical characterization of AO was conducted using GC×GC-Q TOF-MS. A UC mouse model was established by freely drinking DSS to assess the efficacy of AO. Utilizing 16 S rRNA sequencing in combination with untargeted metabolomics analysis of serum, we identified alterations in gut microbiota, differential metabolites, and pathways influenced by AO in UC treatment, thereby elucidating the therapeutic mechanism of AO in UC management. Pharmacodynamic results indicated that AO effectively inhibited the content of inflammation mediators, such as Interleukin-1ß, Interleukin-6 and tumor necrosis factor-α, and proserved colon tissue integrity in UC mice. Furthermore, AO significantly downregulated the abundance of pathogenic bacteria (Bacteroidetes, Proteobacteria, and Desulfobacteriaceae) while increasing the abundance of beneficial bacteria (Firmicutes, Blautia, Akkermansia, and Lachnospiraceae). Metabolomics analysis highlighted significant disruptions in endogenous metabolism in UC mice, with a notable restoration of SphK1 and S1P levels following AO administration. Besides, we discovered that AO regulated the balance of sphingolipid metabolism and protected the intestinal barrier, potentially through the SphK1/MAPK signaling pathway. Overall, this study indicated that AO effectively ameliorates the clinical manifestations of UC by synergistically regulating gut microbe and metabolite homeostasis. AO emerges as a potential functional and therapeutic ingredient for UC treatment.


Asunto(s)
Angelica sinensis , Colitis Ulcerosa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Metabolómica , ARN Ribosómico 16S , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Ratones , Metabolómica/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Angelica sinensis/química , ARN Ribosómico 16S/genética , Masculino , Aceites de Plantas/farmacología , Ratones Endogámicos C57BL , Sulfato de Dextran , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología
18.
Talanta ; 277: 126442, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897006

RESUMEN

Mesenchymal stem cell (MSC) therapy offers a promising cure for Crohn's disease (CD), however, its therapeutic effects vary significantly due to individual differences. Therefore, identifying easily detectable biomarkers is essential to assess the efficacy of MSC therapy. In this study, SAMP1/Yit mice were used as a model of CD, which develop spontaneous chronic ileitis, closely resembling the characteristics present in CD patients. Serum metabolic alterations during treatment were analyzed, through the application of differential 12C-/13C-dansylation labeling liquid chromatography-mass spectrometry. Based on the significant differences and time-varying trends of serum amine/phenol-containing metabolites abundance between the control group, the model group, and the treatment group, four serum biomarkers were ultimately screened for evaluating the efficacy of MSC treatment for CD, namely 4-hydroxyphenylpyruvate, 4-hydroxyphenylacetaldehyde, caffeate, and N-acetyltryptamine, whose abundances both increased in the serum of CD model mice and decreased after MSC treatment. These metabolic alterations were associated with tyrosine metabolism, which was validated by the dysregulation of related enzymes. The discovery of biomarkers may help to improve the targeting and effectiveness of treatment and provide innovative prospects for the clinical application of MSC for CD.


Asunto(s)
Enfermedad de Crohn , Trasplante de Células Madre Mesenquimatosas , Metabolómica , Enfermedad de Crohn/terapia , Enfermedad de Crohn/sangre , Enfermedad de Crohn/metabolismo , Animales , Humanos , Femenino , Ratones , Metabolómica/métodos , Embarazo , Biomarcadores/sangre , Placenta/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Modelos Animales de Enfermedad
19.
Clin Transl Oncol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831193

RESUMEN

BACKGROUND: This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS: 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS: The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION: This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.

20.
Int J Biol Macromol ; 269(Pt 1): 131995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692529

RESUMEN

In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-ß-D-Manp-(1 and 4)-ß-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.


Asunto(s)
Envejecimiento , Dendrobium , Mananos , Animales , Dendrobium/química , Ratones , Mananos/farmacología , Mananos/química , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Masculino , Apoptosis/efectos de los fármacos , Galactosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA