Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37297038

RESUMEN

The search for new sources of high-quality non-crystalline silica as a construction material for high-performance concrete has attracted the interest of researchers for several decades. Numerous investigations have shown that highly reactive silica can be produced from rice husk, an agricultural waste that is abundantly available in the world. Among others, the production of rice husk ash (RHA) by chemical washing with hydrochloric acid prior to the controlled combustion process has been reported to provide higher reactivity because such a process removes alkali metal impurities from RHA and provides an amorphous structure with higher surface area. This paper presents an experimental work in which a highly reactive rice husk ash (TRHA) is prepared and evaluated as a replacement for Portland cement in high-performance concretes. The performance of RHA and TRHA was compared with that of conventional silica fume (SF). Experimental results showed that the increase in compressive strength of concrete with TRHA was clearly observed at all ages, generally higher than 20% of the strength obtained with the control concrete. The increase in flexural strength was even more significant, showing that concrete with RHA, TRHA and SF increased by 20%, 46%, and 36%, respectively. Some synergistic effect was observed when polyethylene-polypropylene fiber was used for concrete with TRHA and SF. The chloride ion penetration results also indicated that the use of TRHA had similar performance compared to that of SF. Based on the results of statistical analysis, the performance of TRHA is found to be identical to that of SF. The use of TRHA should be further promoted considering the economic and environmental impact that will be achieved by utilizing agricultural waste.

2.
Data Brief ; 48: 109131, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37128579

RESUMEN

This dataset contains extensive results on micromechanical behavior and microstructure of alkali-activated materials (AAM) with biomass ash (B) and silica fume (S) precursors. The data were collected at the laboratories of the Federal Center for Technological Education of Minas Gerais (CEFET-MG) in Brazil. Scanning electron microscope (SEM), optical microscopy (OM), and nanoindentation with instrumented penetration (NI) were performed from AAM in the hardened state and advanced age (1000 days). Data include loading curves, hardness, module of elasticity, and microstructure. Data may be useful for researchers and engineers in designing new alternative binders with improved durability.

3.
Materials (Basel) ; 13(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456331

RESUMEN

In this study, ternary ecological concrete (TEC) mixtures were produced with partial substitution of the ordinary Portland cement (OPC) by 10%, 20%, and 30% of sugar cane bagasse ash (SCBA) and silica fume (SF); a control mixture (100% OPC) was prepared according to ACI 211.1 standard. The studied TEC specimens were reinforced with AISI 304 stainless steel and AISI 1018 carbon steel rebars. TEC reinforced specimens were immersed in two different electrolytes, a control (DI-water) and 3.5 wt.% MgSO4 solution, for 180 days. The electrochemical corrosion was monitored by corrosion potential (Ecorr) according to ASTM C-876-15 standard, and the linear polarization resistance (LPR) technique using ASTM G59 standard. The Ecorr and current density icorr results show that AISI 304 stainless steel rebars have a high corrosion resistance, with icorr values below 0.1 µA/cm2, which is interpreted as a level of negligible corrosion. The best corrosion performance was found for the TEC mixture made with a 20% addition of blend of sugar cane bagasse ash-silica fume (SCBA-SF) to the OPC.

4.
Materials (Basel) ; 13(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230741

RESUMEN

The civil construction industry consumes huge amounts of raw materials and energy, especially infrastructure. Thus, the use of eco-friendly materials is indispensable to promote sustainable development. In this context, the present work investigated low-carbon concrete to produce eco-friendly paving blocks. The binder was defined according to two approaches. In the first, a binary binder developed with eucalyptus biomass ash (EBA) and silica fume (SF) was used, in total replacement for Portland cement. In the second, the mixture of residues was used as a precursor in alkali-activation reactions, forming alkali-activated binder. The experimental approach was carried out using five different mixtures, obtained by varying the amount of water or sodium hydroxide solution. The characterization of this new material was carried out using compressive strength, expandability, water absorption, deep abrasion, microstructural investigation, and organic matter degradation potential. The results showed that the EBA-SF system has a performance compatible with Portland cement when used as an alternative binder, in addition to functioning as a precursor to alkali-activated concrete. The blocks produced degraded organic matter, and this degradation is more intense with the incidence of UV. In this way, the EBA-SF binder can be successfully used for the manufacture of ecological paving blocks with low carbon emissions.

5.
Materials (Basel) ; 12(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816822

RESUMEN

The use of supplementary cementitious materials such as fly ash, slag, and silica fume improve reinforced concrete corrosion performance, while decreasing cost and reducing environmental impact compared to ordinary Portland cement. In this study, the corrosion behavior of AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS) reinforcements was studied for 365 days. Three different concrete mixtures were tested: 100% CPC (composite Portland cement), 80% CPC and 20% silica fume (SF), and 80% CPC and 20% fly ash (FA). The concrete mixtures were designed according to the ACI 211.1 standard. The reinforced concrete specimens were immersed in a 3.5 wt.% NaCl test solution to simulate a marine environment. Corrosion monitoring was evaluated using the corrosion potential (Ecorr) according to ASTM C876 and the linear polarization resistance (LPR) according to ASTM G59. The results show that AISI 304 SS reinforcements yielded the best corrosion behavior, with Ecorr values mainly pertaining to the region of 10% probability of corrosion, and corrosion current density (icorr) values indicating passivity after 105 days of experimentation and low probability of corrosion for the remainder of the test period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA