Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.308
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1419568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983115

RESUMEN

Background: Helicobacter pylori infection poses a significant health burden worldwide, and its virulence factor CagA plays a pivotal role in its pathogenesis. Methods: In this study, the interaction between H. pylori-infected AGS cells and silver nanoparticles (AgNPs) was investigated, with a focus on the modulation of CagA-mediated responses, investigated by western blotting. Both, the dose-dependent efficacy against H. pylori (growth curves, CFU assay) and the impact of the nanoparticles on AGS cells (MTT assay) were elucidated. Results: AGS cells infected with H. pylori displayed dramatic morphological changes, characterized by elongation and a migratory phenotype, attributed to CagA activity. Preincubation of H. pylori with AgNPs affected these morphological changes in a concentration-dependent manner, suggesting a correlation between AgNPs concentration and CagA function. Conclusion: Our study highlights the nuanced interplay between host-pathogen interactions and the therapeutic potential of AgNPs in combating H. pylori infection and offers valuable insights into the multifaceted dynamics of CagA mediated responses.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Nanopartículas del Metal , Transducción de Señal , Plata , Helicobacter pylori/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Plata/farmacología , Plata/metabolismo , Humanos , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Interacciones Huésped-Patógeno , Células Epiteliales/microbiología , Factores de Virulencia/metabolismo , Línea Celular , Antibacterianos/farmacología , Línea Celular Tumoral
2.
World J Clin Cases ; 12(19): 3873-3881, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994315

RESUMEN

BACKGROUND: Pressure ulcer (PU) are prevalent among critically ill trauma patients, posing substantial risks. Bundled care strategies and silver nanoparticle dressings offer potential solutions, yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated. AIM: To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients. METHODS: A total of 98 critically ill trauma patients with PUs in intensive care unit (ICU) were included in this study. Patients were randomly assigned to either the control group (conventional care with silver nanoparticle dressing, n = 49) or the intervention group (bundled care with silver nanoparticle dressing, n = 49). The PU Scale for Healing (PUSH) tool was used to monitor changes in status of pressure injuries over time. Assessments were conducted at various time points: Baseline (day 0) and subsequent assessments on day 3, day 6, day 9, and day 12. Family satisfaction was assessed using the Family Satisfaction ICU 24 questionnaire. RESULTS: No significant differences in baseline characteristics were observed between the two groups. In the intervention group, there were significant reductions in total PUSH scores over the assessment period. Specifically, surface area, exudate, and tissue type parameters all showed significant improvements compared to the control group. Family satisfaction with care and decision-making was notably higher in the intervention group. Overall family satisfaction was significantly better in the intervention group. CONCLUSION: Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients. This approach holds promise for improving PUs management in the ICU, benefiting both patients and their families.

3.
Environ Toxicol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980228

RESUMEN

Toll-like receptor 4 (TLR-4) ligands were initially shown to be the source of lipopolysaccharide (LPS), a gram-negative bacterium's cell wall immunostimulatory component. Oxidative stress, apoptosis, and inflammation are all potential effects of LPS treatment on the lungs. By triggering oxidative stress and inflammation, these negative effects could be avoided. Robust flavonoid oleuropein (OLE) exhibits anti-inflammatory, antiproliferative, and antioxidative properties. A nanodelivery system could improve its low bioavailability, making it more effective and useful in treating chronic human ailments. This study evaluates the effects of AgNP-loaded OLE on LPS-induced lung injury in rats in terms of TLR4/P2X7 receptor-mediated inflammation and apoptosis. Forty-eight male albino rats were randomly divided into eight groups. Drugs were administered to the groups in the doses specified as follows: Control, LPS (8 mg/kg ip), OLE (50 mg/kg) AgNPs (100 mg/kg), OLE + AgNPs (50 mg/kg), LPS + OLE (oleuropein 50 mg/kg ig + LPS 8 mg/kg ip), LPS + AgNPs (AgNPs 100 mg/kg ig + LPS 8 mg/kg ip), and LPS + OLE + AgNPs (OLE + AgNPs 50 mg/kg + LPS 8 mg/kg ip). After the applications, the rats were decapitated under appropriate conditions, and lung tissues were obtained. Oxidative stress (SOD, MDA, and GSH), and inflammation (IL-6, IL-1ß, TNF-α, Nrf2, P2X7R, AKT, and TLR4) parameters were evaluated in the obtained lung tissues. Additionally, histopathology studies were performed on lung tissue samples. The data obtained were evaluated by comparison between groups. Both OLE and OLE + AgNPs showed potential in reducing oxidative stress, inflammation, and apoptosis (p < 0.05). These findings were supported by histopathological analysis, which revealed that tissue damage was reduced in OLE and OLE + AgNPs-treated groups. According to the results, LPS-induced lung injury can be reduced by using nanotechnology and producing OLE + AgNP.

4.
Environ Toxicol Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980262

RESUMEN

Although ecotoxicological and toxicological risk assessments are performed separately from each other, recent efforts have been made in both disciplines to reduce animal testing and develop predictive approaches instead, for example, via conserved molecular markers, and in vitro and in silico approaches. Among them, adverse outcome pathways (AOPs) have been proposed to facilitate the prediction of molecular toxic effects at larger biological scales. Thus, more toxicological data are used to inform on ecotoxicological risks and vice versa. An AOP has been previously developed to predict reproductive toxicity of silver nanoparticles via oxidative stress on the nematode Caenorhabditis elegans (AOPwiki ID 207). Following this previous study, our present study aims to extend the biologically plausible taxonomic domain of applicability (tDOA) of AOP 207. Various types of data, including in vitro human cells, in vivo, and molecular to individual, from previous studies have been collected and structured into a cross-species AOP network that can inform both human toxicology and ecotoxicology risk assessments. The first step was the collection and analysis of literature data to fit the AOP criteria and build a first AOP network. Then, key event relationships were assessed using a Bayesian network modeling approach, which gave more confidence in our overall AOP network. Finally, the biologically plausible tDOA was extended using in silico approaches (Genes-to-Pathways Species Conservation Analysis and Sequence Alignment to Predict Across Species Susceptibility), which led to the extrapolation of our AOP network across over 100 taxonomic groups. Our approach shows that various types of data can be integrated into an AOP framework, and thus facilitates access to knowledge and prediction of toxic mechanisms without the need for further animal testing. Environ Toxicol Chem 2024;00:1-14. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

5.
Environ Geochem Health ; 46(8): 298, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980518

RESUMEN

Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.


Asunto(s)
Biomarcadores , Cromo , Nanopartículas del Metal , Plata , Contaminantes Químicos del Agua , Zeolitas , Animales , Cromo/química , Zeolitas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Plata/química , Plata/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Hidrogeles/química , Bioacumulación , Inactivación Metabólica , Galactanos , Mananos , Gomas de Plantas
6.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955171

RESUMEN

The current work emphasizes the preparation of trimetallic core-shell Ag-TeO2@ZnO nanocomposites (NCs) by thermo-mechanical method for the efficient photocatalytic degradation of 2,4-Dichlorophenol and ß-naphthol pollutants. FE-SEM shows that Ag and TeO2nanoparticles are deposited on the surface of ZnO nanotubes. The band gap of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are found to be 3.16 and 2.96 eV, respectively. The calculated specific surface area (SBET) of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are 40.47 and 45.66 m2g-1respectively, confirming that Ag and TeO2nanoparticles contribute to increasing in surface area of pure ZnO. The synthesised nanocomposite showed excellent photocatalytic performance for the degradation of ß -naphthol (95.6%) in 40 min at the concentration of (0.6 mg ml-1) and 2,4-DCP (99.6%) in 180 min (0.4 mg ml-1) under natural sunlight. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were carried out to study the electrochemical properties. The determination of reactive oxygen species (ROS) confirmed that the degradation of the pollutants by 5 wt% Ag-TeO2@ZnO NCs was due to the formation of superoxide radicals. Electron paramagnetic resonance revealed the presence of sharp signals in pure ZnO nanoparticles at g ∼1.95 and oxygen vacancy peak at g ∼2.01 in 5 wt% Ag-TeO2@ZnO NCs. To study the mechanism behind the degradation of pollutants, Scavenger test using histidine and ascorbic acid (ROS scavengers) was performed. The synthesised nanocomposites are highly stable and showed enhanced efficiency up to three cycles, confirming their reusability as a photocatalyst.

7.
Chemosphere ; : 142748, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960050

RESUMEN

In this report, we have developed highly water soluble and stable silver nanoparticles (Ag NPs) utilizing N-Cholyl Mercapto Histidine (NCMH) as a reducing and stabilizing agent with near the primary critical micellar concentration (CMC) under ambient sunlight irradiation. Moreover, The NCMH was firstly synthesized by demonstrating the reaction between cholic acid and 2- Mercapto Histidine through a simple acid amine coupling approach. The primary and secondary CMC of NCMH surfactant was measured by pyrene (1× 10-6 M) as a fluorescent probe, and values were found to be 3.2 and 13.1 mM respectively. The synthesised Ag NPs showed at neutral pH and highly stable for more than one year without any noticeable aggregation. The TEM analysis displays the synthesized Ag NPs having a spherical shape and average size of 9.6 ± 0.5 nm. The synthesis of stabilized Ag NPs was used for ultra-sensitive and selective detection of Hg2+ ions in aqueous medium were monitored by Uv-visible spectrometer and naked eyes with a lowest limit of detection (LOD) 7 nM. The photo-catalytic degradation of methyl orange (MO) by utilizing Ag NPs as nano-catalyst exhibits a potential degradation within a study period of 180 min. Concluding that, facile and cost effective green synthesis of NCMH capped Ag NPs possess excellent reducing ability towards the selective detection of Hg2+ ions along with photo-catalytic degradation of MO dye. These true findings detached an innovative pathway of Ag NPs towards the reactivity against the catalytic activity of dye degradation and selective sensing of Hg2+ ions. Thus it paves the way for extensive range of novel potential applications of Ag NPs in various environment friendly approaches of sensitive and analytical protocol in the future.

8.
Sci Total Environ ; : 174433, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960153

RESUMEN

A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.

9.
Int J Nanomedicine ; 19: 6981-6997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005961

RESUMEN

Background: Enterococcus faecalis (E. faecalis) is one of the main pathogens responsible for refractory root canal infections in the teeth and shows resistance against various antibacterial managements. Effective control of E. faecalis infection is a prerequisite for successful treatment of refractory apical periodontitis. This study aimed to analyze the antibacterial activity and mechanisms of Au@Ag nanoparticles (NPs) combined with photothermal therapy (PTT) against the original and Ag+-resistant E. faecalis. Methods: Au@AgNPs with optimal shell thicknesses were synthesized and characterized. The antibacterial activity of Au@AgNPs with PTT against the original or Ag+-resistant E. faecalis was evaluated, and the antibiofilm activity was tested on E. faecalis biofilm on the dentin of teeth. The potential antibacterial mechanisms of Au@AgNPs combined with PTT against E. faecalis have also been studied. Moreover, its influence on dentin microhardness and cytotoxicity was assessed. Results: This study revealed that Au@AgNPs combined with PTT showed enhanced antibacterial and antibiofilm effects, no negative effects on dentin microhardness, and low cytotoxicity toward human periodontal ligament cells (hPDLCs). Moreover, Au@AgNPs combined with PTT effectively inhibited the growth of Ag+-resistant E. faecalis. Its antibacterial effects may be exerted through the release of silver ions (Ag+), destruction of the cell membrane, production of reactive oxygen species (ROS) and inhibition of adenosine triphosphate (ATP) production. Hyperthermia generated by Au@AgNPs with PTT reduced membrane fluidity and enhanced Ag+ sensitivity by downregulating fabF expression. The upregulated expression of heat shock genes demonstrated that the Ag+ released from Au@AgNPs compromised the heat adaptation of E. faecalis. Conclusion: PTT significantly enhanced Ag+ sensitivity of the original and Ag+-resistant E. faecalis. Au@AgNPs combined with PTT may have the potential to be developed as a new antibacterial agent to control E. faecalis infections in teeth.


Asunto(s)
Antibacterianos , Biopelículas , Dentina , Enterococcus faecalis , Oro , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Enterococcus faecalis/efectos de los fármacos , Humanos , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Dentina/química , Dentina/efectos de los fármacos , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Rayos Infrarrojos , Especies Reactivas de Oxígeno/metabolismo
10.
Front Microbiol ; 15: 1399331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006753

RESUMEN

Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

11.
Front Bioeng Biotechnol ; 12: 1400542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007052

RESUMEN

Introduction: This study explores the therapeutic potential of silver nanoparticles (Ag NPs) synthesized using a Helianthemum lippii extract in mitigating cadmium-induced hepatotoxicity in Wistar rats. Given the increasing environmental and health concerns associated with cadmium exposure, novel and eco-friendly therapeutic strategies are essential. Methods: Ag NPs were characterized using X-ray diffraction, UV-Vis spectrometry, and energy-dispersive X-ray spectroscopy with scanning electron microscopy, confirming their formation with a cubic crystal structure and particle sizes ranging from 4.81 to 12.84 nm. A sub-acute toxicity study of Ag NPs (2 mg/kg and 10 mg/kg) was conducted, showing no significant difference compared to untreated control rats (n = 3 animals/group). Subsequently, adult Wistar rats (n = 5/group) were divided into a control group and three experimental groups: Ag NPs alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, and CdCl2 exposure followed by 0.1 mg/kg/day Ag NPs intraperitoneally for 15 days. Results: In the CdCl2-exposed group, there was a significant decrease in body weight and increases in alanine and aspartate transaminase levels (p < 0.05 vs. control), indicating hepatotoxicity. Additionally, antioxidant defenses were decreased, and malondialdehyde levels were elevated. Liver histology revealed portal fibrosis, inflammation, necrosis, sinusoid and hepatic vein dilation, and cytoplasmic vacuolations. Treatment with Ag NPs post-CdCl2 exposure mitigated several adverse effects on liver function and architecture and improved body weight. Discussion: This study demonstrates the efficacy of Ag NPs synthesized via a green method in reducing cadmium-induced liver damage. These findings support the potential of Ag NPs in therapeutic applications and highlight the importance of sustainable and eco-friendly nanoparticle synthesis methods. By addressing both toxicity concerns and therapeutic efficacy, this research aligns with the growing emphasis on environmentally conscious practices in scientific research and healthcare.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39007970

RESUMEN

Silver nanoparticles (AgNPs) have garnered significant global attention from researchers due to their unique physicochemical properties and wide-ranging applications in industry and medicine. However, their release into aquatic ecosystems has raised concerns regarding potential ecotoxicological consequences. The present study investigated the effects of polyvinyl pyrrolidone-coated silver nanoparticles on Labeo rohita fingerlings, focusing on behavioural reactions, genotoxic effects, histological changes and bioaccumulation. L. rohita fingerlings were exposed to polyvinyl pyrrolidone-coated silver nanoparticles with sizes ranging from 18 to 29 nm for 7 days at concentrations of 100, 200, 400 and 800 ug/l. The nanoparticle zeta potential was found to be extremely negative, measuring - 55.5 mV for 18 nm and - 31.4 mV for 29 nm. Behavioural abnormalities, including respiratory distress, reduced responsiveness and erratic swimming, were observed in exposed groups compared to controls, with severity increasing with higher nanoparticle concentrations. Genotoxicity assessment revealed significantly higher DNA damage in kidney cells compared to gill cells. Histological examination of gill tissues showed clogging in primary and secondary lamellae, along with distorted anatomy, necrosis and vacuolar atrophy in peripheral tubules of the kidneys. The kidneys exhibited greater nanoparticle accumulation than the gills with prolonged exposure. Moreover, 18 nm AgNPs induced more pronounced DNA damage and histological alterations in the kidney and gill tissues compared to 29 nm nanoparticles. This study elucidates the critical role of monitoring AgNPs in aquatic systems, providing essential data on their behaviour and environmental impacts. The findings highlight the need for improved detection techniques and effective management of AgNP contamination. Future research should focus on developing more sensitive analytical methods, understanding long-term ecological effects and exploring innovative remediation strategies.

13.
Nanotechnology ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991514

RESUMEN

The widespread use of antibiotics often leads to increased bacterial resistance. Herein, we reported silver peroxide-incorporated carbon dots (defined as Ag2O2-CDs) with high photothermal conversion efficiency via in situ oxidation process. The prepared Ag2O2-CDs exhibited ultra-small size of 2.0 nm and hybrid phase structure. Meanwhile, the Ag2O2-CDs were of similar optical performance to traditional carbon dots (CDs). Importantly, the incorporation of Ag2O2 into CDs significantly enhanced photothermal conversion efficiency from 3.8% to 28.5%. By combining silver ion toxicity and photothermal ablation, the Ag2O2-CDs were capable of destroying gram-positive and gram-negative bacterium effectively. These findings demonstrated that the Ag2O2-CDs could be served as a potential antibacterial agent for clinical applications. .

14.
Angew Chem Int Ed Engl ; : e202409664, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949121

RESUMEN

The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salt H2-L(PF6)2 (L = 2a, 2b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular p···p interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6) while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.

15.
Curr Med Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38984584

RESUMEN

Argyria is the chronic accumulation of silver in biological tissues such as skin, liver, kidneys, lungs, peripheral nerves, and brain. The presence of an actual pathophysiological and clinical correlate related to silver encephalic and peripheral nerve deposition is still much debated. In this paper, we reviewed and described case reports regarding argyria associated with neuropsychiatric symptoms in order to explain the underlying mechanism of the disease. We conducted a narrative review by searching for case reports that described subjects with chronic silver accumulation and who had associated neurological or psychiatric symptoms. Moreover, we report a case of a 50-year-old man admitted to our hospital with a diagnosis of major depression who presented with worsening psychiatric symptoms after abuse of silver-containing nasal spray. We found 15 cases of patients with argyria and neuropsychiatric manifestations such as epilepsy, neurodegenerative syndromes, multiple sclerosis, peripheral neuropathy, and psychiatric disorders. The knowledge of possible pathogenetic mechanisms and recognition of clinical features of argyria can help clinicians prevent brain deposition and its complications.

16.
Biol Trace Elem Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985237

RESUMEN

Nanotechnology has become a major topic of study, particularly in the medical and health domains. Because nanomedicine has a higher recovery rate than other conventional drugs, it has attracted more attention. Green synthesis is the most efficient and sustainable method of creating nanoparticles. The current work used ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction to thoroughly characterize the synthesized silver nanoparticles (AgNPs) from Azadirachta indica leaf extract. Characterization confirmed the synthesis of the AgNPs along with the possible linkage of the phytochemicals with the silver as well as the quantitative analysis and nature of NPs. The antioxidant activity of AgNPs and neem extract was measured by the 2,2-diphenyl-1-picrylhydrazyl assay using various concentrations (20, 40, 60, 80, and 100 µg/ml). Additionally, using diabetic mice that had been given alloxan, the in vivo antidiabetic potential of biosynthesized AgNPs was assessed. Eight groups of mice were used to assess the antidiabetic activity: one control group and seven experimental groups (untreated, extract-treated, AgNPs at low and high doses, standard drug, low dose of AgNPs + drug, and high dose of AgNPs + drug). At days 0, 7, 14, 21, and 28, blood glucose levels and body weight were measured. After 28 days, the mice were dissected, and the liver, kidney, and pancreas were examined histologically. The results depicted that the AgNPs showed higher (significant) radical scavenging activity (IC50 = 35.2 µg/ml) than extract (IC50 = 93.0 µg/ml) and ascorbic acid (IC50 = 64.6 µg/ml). The outcomes demonstrated that biosynthesized AgNPs had a great deal of promise as an antidiabetic agent and exhibited remarkable effects in diabetic mice given AgNPs, extract, and drug. Remarkable improvement in the body weight and blood glucose level of mice treated with high doses of AgNPs and drug was observed. The body weight and blood glucose level of diabetic mice treated with a high dose of AgNPs + standard drug showed significant improvement, going from 28.7 ± 0.2 to 35.6 ± 0.3 g and 248 ± 0.3 to 109 ± 0.1 mg/dl, respectively. Significant regeneration was also observed in the histomorphology of the kidney, liver's central vein, and islets of Langerhans after treatment with biosynthesized AgNPs. Diabetic mice given a high dose of AgNPs and drug displayed architecture of the kidney, liver, and pancreas that was nearly identical to that of the control group. According to the current research, biosynthesized AgNPs have strong antioxidant and antidiabetic potential and may eventually provide a less expensive option for the treatment of diabetes.

17.
Bot Stud ; 65(1): 17, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985236

RESUMEN

BACKGROUND: Silver nanoparticles are widely used in various fields such as industry, medicine, biotechnology, and agriculture. However, the inevitable release of these nanoparticles into the environment poses potential risks to ecosystems and may affect plant productivity. Coronatine is one of the newly identified compounds known for its beneficial influence on enhancing plant resilience against various stress factors. To evaluate the effectiveness of coronatine pretreatment in mitigating the stress induced by silver nanoparticles on cress plants, the present study was carried out. RESULTS: Our findings indicated a decrease in multiple growth parameters, proline content, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in cress plants exposed to silver nanoparticle treatment. This decline could be attributed to the oxidative stress induced by the presence of silver nanoparticles in the plants. Conversely, when coronatine treatment was applied, it effectively mitigated the reduction in growth parameters and pigments induced by the silver nanoparticles. Furthermore, we observed an increase in silver content in both the roots and shoot portions, along with elevated levels of malondialdehyde (MDA) content, hydrogen peroxide (H2O2), anthocyanins, glutathione (GSH), and antioxidant enzyme activities in plants exposed to silver nanoparticles. Concurrently, there was a decrease in total phenolic compounds, ascorbate, anthocyanins, and proline content. Pre-treatment of cress seeds with coronatine resulted in increased levels of GSH, total phenolic compounds, and proline content while reducing the silver content in both the root and shoot parts of the plant. CONCLUSIONS: Coronatine pre-treatment appeared to enhance both enzymatic and non-enzymatic antioxidant activities, thereby alleviating oxidative stress and improving the response to stress induced by silver nanoparticles.

18.
Sci Rep ; 14(1): 15885, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987354

RESUMEN

Photocatalytic degradation of several harmful organic compounds has been presented as a potential approach to detoxify water in recent decades. Trypan Blue (TB) is an acidic azo dye used to distinguish live cells from dead ones and it's classified as a carcinogenic dye. In this study, silver phosphate (Ag3PO4) nanoparticles and novel Ag3PO4/graphene/SiO2 nanocomposite have been successfully prepared via simple precipitation method. Afterward, their physical properties, chemical composition, and morphology have been characterized using SEM, EDS, TEM, SAED, BET, XRD, FTIR and UV-VIS spectroscopy. The specific surface area of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite were reported to be 1.53 and 84.97 m2/g, respectively. The band gap energy of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite was measured to be 2.4 and 2.307 eV, respectively. Photocatalytic degradation of Trypan blue (TB) was studied at different parameters such as pH, catalyst dosage, initial concentration, and contact time. The results showed that, at initial dye concentration of 20 ppm, pH = 2, and using 0.03 g of Ag3PO4/G/SiO2 as a photocatalyst, the degradation percent of TB dye in the aqueous solution was 98.7% within 10 min of light exposure. Several adsorption isotherms such as Langmuir, Freundlich, and Temkin adsorption isotherms have been tested in addition to the photocatalytic degradation kinetics. Both catalysts were found to follow the Langmuir isotherm model and pseudo-second-order kinetic model. Finally, the possible photocatalytic performance mechanism of Ag3PO4/G/SiO2 was proposed.

19.
BMC Complement Med Ther ; 24(1): 259, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987719

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) are receiving a lot of attention as a prospective antibacterial agent for use in caries prevention. The objective of this study was to investigate the bioactivity and antibacterial effect of silver nanoparticles biosynthesized using Star Anise against Streptococcus mutans (S.mutans). METHODS: The bioactive components of the Star Anise were assessed by employing the gas chromatography-mass spectrometry technique. The antibacterial activities of Star Anise Biosynthesized Silver Nanoparticles against S.mutans bacteria were evaluated using Bauer and Kirby's disc diffusion mechanism and the minimum inhibitory concentration. RESULTS: Silver nanoparticles biosynthesized using Star Anise revealed high antioxidant activity. AgNPs inhibited S. mutans with a 16 mm inhibition zone diameter and demonstrated an 80 µg/ml minimum inhibitory concentration. CONCLUSIONS: Biologically synthesized AgNPs made from aqueous extract of Star anise appear to be a potential and effective bactericidal agent against S.mutans that can be used to prevent dental caries.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
20.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998250

RESUMEN

Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor photocatalysis is considered an efficient complement to conventional methods, and the use of various nanomaterials for this purpose has been widely explored, with a particular focus on improving their activity under visible light. This work focuses on developing magnetic and photoactive zinc/magnesium mixed ferrites (Zn0.5Mg0.5Fe2O4) by sol-gel and solvothermal synthesis methods, which are two of the most important and efficient methods used for the synthesis of ferrite nanoparticles. The nanoparticles (NPs) synthesized by the sol-gel method exhibited an average size of 14.7 nm, while those synthesized by the solvothermal method had an average size of 17.4 nm. Both types possessed a predominantly cubic structure and demonstrated superparamagnetic behavior, reaching a magnetization saturation value of 60.2 emu g-1. Due to the high recombination rate of electrons/holes, which is an intrinsic feature of ferrites, surface functionalization with silver was carried out to enhance charge separation. The results demonstrated a strong influence of adsorption and of the deposition of silver. Several optimization steps were performed during synthesis, allowing us to create efficient catalysts, as proved by the almost full removal of the dye malachite green attaining 95.0% (at a rate constant of 0.091 min-1) and 87.6% (at a rate constant of 0.017 min-1) using NPs obtained by the sol-gel and solvothermal methods, respectively. Adsorption in the dark accounted for 89.2% of the dye removal for nanoparticles prepared by sol-gel and 82.8% for the ones obtained by the solvothermal method. These results make mixed zinc/magnesium ferrites highly promising for potential industrial application in effluent photoremediation using visible light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...