Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402205, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158120

RESUMEN

Lead halide perovskites are structurally not stable due to their ionic bonds. Using sulfur agents in the crystal growth improves the stability and performance of the photovoltaic and light-emitting devices. In this theoretical work, we use a small toy S-radical in place of A cation in the bulk of lead iodide perovskite, and highlight the significance of the Pb-S covalent-double-bond formation for: the charge redistribution on the neighboring bonds that also turn to be covalent, phase transformation to a stable non-perovskite structure, and superior optoelectronic properties. The chemical analysis was performed with the Quantum Theory of Atoms In Molecules (QTAIM) and Non-Covalent Interactions (NCI) index. Excitonic properties were obtained from the solution of ab initio Bethe-Salpeter equation. Presence of the spin-orbit coupling triggers an interplay between the Frenkel and charge-transfer multiexcitons, switching between the photovoltaic and laser applications. Multiexcitons obey the exciton-fission preconditions.

2.
J Comput Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139132

RESUMEN

Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 $$ {}_1 $$ and S 2 $$ {}_2 $$ ) and singly excited triplets (T 1 $$ {}_1 $$ and T 2 $$ {}_2 $$ ), the full spin manifold of multiexcitonic triplet-pair states ( 1 $$ {}^1 $$ ME, 3 $$ {}^3 $$ ME, 5 $$ {}^5 $$ ME) has been considered. In the ortho- and para-regioisomers, the 1 $$ {}^1 $$ ME and S 1 $$ {}_1 $$ potentials intersect upon geometry relaxation of the S 1 $$ {}_1 $$ excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 $$ {}^1 $$ ME state. While the 5 $$ {}^5 $$ ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.

3.
Adv Sci (Weinh) ; : e2405864, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135542

RESUMEN

The singlet fission characteristics of aqueous nanoparticles, self-assembled from ion pairs of tetracene dicarboxylic acid and various amines with or without chirality, are thoroughly investigated. The structure of the ammonium molecule, the counterion, is found to play a decisive role in determining the molecular orientation of the ion pairs and its regularity, spectroscopic properties, the strength of the intermolecular coupling between the tetracene chromophores, and the consequent singlet fission process. Using chiral amines has led to the formation of crystalline nanosheets and efficient singlet fission with a triplet quantum yield as high as 133% ±20% and a rate constant of 6.99 × 109 s-1. The chiral ion pairs also provide a separation channel to free triplets with yields as high as 33% ±10%. In contrast, nanoparticles with achiral counterions do not show singlet fission, which gave low or high fluorescence quantum yields depending on the size of the counterions. The racemic ion pair produces a correlated triplet pair intermediate by singlet fission, but no decorrelation into two free triplets is observed, as triplet-triplet annihilation dominates. The introduction of chirality enables higher control over orientation and singlet fission in self-assembled chromophores. It provides new design guidelines for singlet fission materials.

4.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857313

RESUMEN

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

5.
Annu Rev Phys Chem ; 75(1): 437-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941526

RESUMEN

Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.

6.
Chemphyschem ; 25(15): e202400128, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659320

RESUMEN

Acenes, especially tetracene derivatives, are used as singlet fission materials. The recent synthesis of Dodecaphenyl tetracene (showing end-to-end twist angles of 96-98 degrees) and twisted anthracene derivatives show that the synthesis of twisted linear oligoacenes is possible. Energy calculations and NICS-X-scan studies predict that twisted acenes may be better singlet fission materials compared to their planar analogues.

7.
Chemphyschem ; 25(13): e202300872, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572936

RESUMEN

Diketopyrrolopyrrole (DPP) functionalised with an electron donating unit acts as a donor-acceptor molecules that have shown potential for application in dyes and photovoltaics. These molecules offer broad absorption/emission properties and structure-dependent dynamics. In this study, we used femtosecond pump-probe spectroscopy to investigate the photo-initiated dynamics of thiophene linked DPP derivatives. The thio-DPPs are further functionalised by different electrons withdrawing terminal groups, namely benzoxazole and thiophene dicyanide. The benzoxazole derivative is strongly emissive and directly relaxes directly to the ground state chloroform solution. Thiophene dicyanide derivative exhibits distinct spectral evolution in the first 10 ps, associated with structural and vibronic process. Later, it crosses over to the triplet state with a yield of 20 %. In the solid-state (thin film), we observed a signal that resembles singlet fission. However, upon careful analysis of temperature-dependent steady state absorbance spectra, we conclude that these features are due to laser-induced thermal artifacts. We describe a simplified excited state evolution in the thin film that does not include any additional excited states. These findings have significant implications for the analysis of triplet formation, which plays a major role in the photophysics of many organic materials.

8.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412017

RESUMEN

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

9.
Chemphyschem ; 25(7): e202300737, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38284145

RESUMEN

Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally. In this report we synthesized a series of stable substituted monobenzopentalenes and provided the first experimental exploration of their photophysical properties. Structural and opto-electronic characterization revealed that all derivatives showed 1H NMR shifts in the olefinic region, bond length alternation in the pentalene unit, low-intensity absorptions reflecting the ground-state antiaromatic character and in turn the symmetry forbidden HOMO-to-LUMO transitions of ~2 eV and redox amphotericity. This was also supported by computed aromaticity indices (NICS, ACID, HOMA). Accordingly, substituents did not affect the fulfilment of the energetic criterion of SF, as the computed excited-state energy levels satisfied the required E(S1)/E(T1)>2 relationship. Further spectroscopic measurements revealed a concentration dependent quenching of the excited state and population of the S2 state on the nanosecond timescale, providing initial evidence for unusual photophysics and an alternative entry point for singlet fission with monobenzopentalenes.

10.
Angew Chem Int Ed Engl ; 63(8): e202315747, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179830

RESUMEN

A series of ferrocene(Fc)-bridged pentacene(Pc)-dimers [Fc-Ph(2,n)-(Pc)2 : n=number of phenylene spacers] were synthesized to examine the tortional motion effect of Fc-terminated phenylene linkers on strongly coupled quintet multiexciton (5 TT) formation through intramolecular singlet fission (ISF). Fc-Ph(2,4)-(Pc)2 has a relatively small electronic coupling and large conformational flexibility according to spectroscopic and theoretical analyses. Fc-Ph(2,4)-(Pc)2 exhibits a high-yield 5 TT together with quantitative singlet TT (1 TT) generation through ISF. This demonstrates a much more efficient ISF than those of other less flexible Pc dimers. The activation entropy in 1 TT spin conversion of Fc-Ph(2,4)-(Pc)2 is larger than those of the other systems due to the larger conformational flexibility associated with the torsional motion of the linkers. The torsional motion of linkers in 1 TT is attributable to weakened metal-ligand bonding in the Fc due to hybridization of the hole level of Pc to Fc in 1 TT unpaired orbitals.

11.
Adv Mater ; 36(2): e2305602, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37815223

RESUMEN

The high-throughput exploration and screening of molecules for organic electronics involves either a 'top-down' curation and mining of existing repositories, or a 'bottom-up' assembly of user-defined fragments based on known synthetic templates. Both are time-consuming approaches requiring significant resources to compute electronic properties accurately. Here, 'top-down' is combined with 'bottom-up' through automatic assembly and statistical models, thus providing a platform for the fragment-based discovery of organic electronic materials. This study generates a top-down set of 117K synthesized molecules containing structures, electronic and topological properties and chemical composition, and uses them as building blocks for bottom-up design. A tool is developed to automate the coupling of these building blocks at their C(sp2/sp)-H bonds, providing a fundamental link between the two dataset construction philosophies. Statistical models are trained on this dataset and a subset of resulting top-down/bottom-up compounds, enabling on-the-fly prediction of ground and excited state properties with high accuracy across organic compound space. With access to ab initio-quality optical properties, this bottom-up pipeline may be applied to any materials design campaign using existing compounds as building blocks. To illustrate this, over a million molecules are screened for singlet fission. tThe leading candidates provide insight into the features promoting this multiexciton-generating process.

12.
Macromol Rapid Commun ; 45(1): e2300241, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548255

RESUMEN

Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.


Asunto(s)
Polímeros
13.
Angew Chem Int Ed Engl ; 63(8): e202315064, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38092707

RESUMEN

Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).

14.
Adv Mater ; 36(14): e2308578, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38140834

RESUMEN

Multijunction devices and photon up- and down-conversion are prominent concepts aimed at increasing photovoltaic efficiencies beyond the single junction limit. Integrating these concepts into advanced architectures may address long-standing issues such as processing complexity, microstructure control, and resilience against spectral changes of the incoming radiation. However, so far, no models have been established to predict the performance of such integrated architectures. Here, a simulation environment based on Bayesian optimization is presented, that can predict and virtually optimize the electrical performance of multi-junction architectures, both vertical and lateral, in combination with up- and down-conversion materials. Microstructure effects on performance are explicitly considered using machine-learned predictive models from high throughput experimentation on simpler architectures. Two architectures that would surpass the single junction limit of photovoltaic energy conversion at reasonable complexity are identified: a vertical "staggered half octave system," where selective absorption allows the use of 6 different bandgaps, and the lateral "overlapping rainbow system" where selective irradiation allows the use of a narrowband energy acceptor with reduced voltage losses, according to the energy gap law. Both architectures would be highly resilient against spectral changes, in contrast with two terminal multi-junction architectures which are limited by Kirchhoff's law.

15.
Proc Natl Acad Sci U S A ; 120(49): e2310124120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019862

RESUMEN

Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair [Formula: see text]. The "reaction coordinates" for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the [Formula: see text] photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.

16.
Angew Chem Int Ed Engl ; 62(38): e202305323, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37524654

RESUMEN

High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC ) but E S 1 ≥ 2 E T 1 ${{E}_{{S}_{1}}\ge {2E}_{{T}_{1}}}$ form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but E S 1 ≤ 2 E T 1 ${{E}_{{S}_{1}}\le {2E}_{{T}_{1}}}$ . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.

17.
ACS Appl Mater Interfaces ; 15(31): 38049-38055, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493635

RESUMEN

Singlet fission (SF) materials have been applied in various types of solar cells to pursue higher power conversion efficiency (PCE) beyond the Shockley-Queisser (SQ) limit. SF implementation in perovskite solar cells has not been successfully realized yet due to the insufficient understanding of the SF/perovskite heterojunctions. In this work, we attempt to elucidate the charge dynamics of an SF/perovskite system by incorporating a well-known SF molecule, TIPS-pentacene, and a triple-cation perovskite Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45, owing to their well-matched energy structures. The transient absorption spectra and kinetic fitting plots suggest an electron-transfer process from the triplet state of TIPS-pentacene to perovskite in the picosecond regime, which increases the carrier density by 20% in the perovskite layer. This work confirms the existence of an electron-transfer process between the SF material and perovskite, providing a pathway to SF-enhanced perovskite solar cells.

18.
Chemistry ; 29(61): e202301547, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37377132

RESUMEN

Singlet fission is a phenomenon that could significantly improve the efficiency of photovoltaic devices. Indolonaphthyridine thiophene (INDT) is a photostable singlet fission material that could potentially be utilised in singlet fission-based photovoltaic devices. This study investigates the intramolecular singlet fission (i-SF) mechanism of INDT dimers linked via para-phenyl, meta-phenyl and fluorene bridging groups. Using ultra-fast spectroscopy the highest rate of singlet fission is found in the para-phenyl linked dimer. Quantum calculations show the para-phenyl linker encourages enhanced monomer electronic coupling. Increased rates of singlet fission were also observed in the higher polarity o-dichlorobenzene, relative to toluene, indicating that charge-transfer states have a role in mediating the process. The mechanistic picture of polarisable singlet fission materials, such as INDT, extends beyond the traditional mechanistic landscape.

19.
Adv Sci (Weinh) ; 10(19): e2300406, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37083237

RESUMEN

X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X-ray sensitivity and imaging resolution of the singlet fission-based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission-based scintillator exhibits a high X-ray imaging resolution of 27.5 line pairs per millimeter (lp mm-1 ), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.

20.
J Magn Reson ; 349: 107410, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870248

RESUMEN

The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA