RESUMEN
Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle ω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.
Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Aceites de Pescado/farmacología , Músculo Esquelético/metabolismo , Atrofia Muscular/terapia , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Suspensión Trasera , Masculino , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Ratas , Ratas WistarRESUMEN
Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle ω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.
RESUMEN
Although we have shown that catecholamines suppress the activity of the Ubiquitin-Proteasome System (UPS) and atrophy-related genes expression through a cAMP-dependent manner in skeletal muscle from rodents, the underlying mechanisms remain unclear. Here, we report that a single injection of norepinephrine (NE; 1 mg kg-1 ; s.c) attenuated the fasting-induced up-regulation of FoxO-target genes in tibialis anterior (TA) muscles by the stimulation of PKA/CREB and Akt/FoxO1 signaling pathways. In addition, muscle-specific activation of PKA by the overexpression of PKA catalytic subunit (PKAcat) suppressed FoxO reporter activity induced by (1) a wild-type; (2) a non-phosphorylatable; (3) a non-phosphorylatable and non-acetylatable forms of FoxO1 and FoxO3; (4) downregulation of FoxO protein content, and probably by (5) PGC-1α up-regulation. Consistently, the overexpression of the PKAcat inhibitor (PKI) up-regulated FoxO activity and the content of Atrogin-1 and MuRF1, as well as induced muscle fiber atrophy, the latter effect being prevented by the overexpression of a dominant negative (d. n.) form of FoxO (d.n.FoxO). The sustained overexpression of PKAcat induced fiber-type transition toward a smaller, slower, and more oxidative phenotype and improved muscle resistance to fatigue. Taken together, our data provide the first evidence that endogenous PKA activity is required to restrain the basal activity of FoxO and physiologically important to maintain skeletal muscle mass.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/metabolismo , Animales , Línea Celular , Proteína Forkhead Box O3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Mioblastos Esqueléticos/enzimología , Transducción de SeñalRESUMEN
Flavobacterium psychrophilum is the etiologic agent of rainbow trout fry syndrome (RTFS). This pathogen infects a wide variety of salmonid species during freshwater stages, causing significant losses in the aquaculture industry. Rainbow trout (Oncorhynchus mykiss) infected with F. psychrophilum, presents as the main external clinical sign ulcerative lesions and necrotic myositis in skeletal muscle. We previously reported the in vitro cytotoxic activity of F. psychrophilum on rainbow trout myoblast, however little is known about the molecular mechanisms underlying the in vivo pathogenesis in skeletal muscle. In this study, we examined the transcriptomic profiles of skeletal muscle tissue of rainbow trout intraperitoneally challenged with low infection dose of F. psychrophilum. Using high-throughput RNA-seq, we found that 233 transcripts were up-regulated, mostly associated to ubiquitin mediated proteolysis and apoptosis. Conversely, 189 transcripts were down-regulated, associated to skeletal muscle contraction. This molecular signature was consistent with creatine kinase activity in plasma and oxidative damage in skeletal muscle. Moreover, the increased caspase activity suggests as a whole skeletal muscle atrophy induced by F. psychrophilum. This study offers an integrative analysis of the skeletal muscle response to F. psychrophilum infection and reveals unknown aspects of its pathogenesis in rainbow trout.
Asunto(s)
Enfermedades de los Peces/genética , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Oncorhynchus mykiss/genética , Transcriptoma , Animales , Acuicultura , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Interacciones Huésped-Patógeno , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiología , Músculo Esquelético/patología , Oncorhynchus mykiss/microbiologíaRESUMEN
Due to the difficulty of performing research protocols that reproduce human skeletal muscle disuse conditions, an experimental animal model of "hindlimb suspension" (or hindlimb unloading) was developed. This method was created in the 1970s and utilizes rats and mice to mimic space flight and bed rest in humans. It provides an alternative to investigate mechanisms associated with skeletal muscle mass loss and interventions designed to attenuate atrophy induced by hindlimb unloading. The mentioned protocol also allows investigating quality of bones and changes in several physiological parameters such as blood pressure, heart rate, plasma or tissue lipid composition, and glycemia.
Asunto(s)
Atrofia/sangre , Suspensión Trasera/métodos , Músculo Esquelético/fisiopatología , Atrofia Muscular/sangre , Animales , Atrofia/genética , Atrofia/fisiopatología , Presión Sanguínea , Humanos , Lípidos/sangre , Músculo Esquelético/metabolismo , Atrofia Muscular/fisiopatología , Ratas , RoedoresRESUMEN
Lipopolysaccharide (LPS) is considered as a powerful inducer of muscle atrophy in higher vertebrates due to skeletal muscle cell recognition of the endotoxin and a consequent activation of catabolic signaling pathways. In contrast, there is no evidence of LPS directly inducing skeletal muscle atrophy in lower vertebrates, such as fish. For years it has been assumed that fish are resistant to LPS, mainly due to differences in the key features of toll-like receptor (TLR) signaling pathways when compared with mammals. In this study, we report that the stimulation of cultured rainbow trout (Oncorhynchus mykiss) myotubes with LPS (100 ng/ml) resulted in a transient decrease in the pAkt/Akt ratio, a subsequent reduction in the pFoxO1/FoxO1 ratio, and a significant increase in atrogin-1 transcript expression. Preincubation with polymyxin B, an LPS-neutralizing agent, and 740 Y-P, an agonist of p85-PI3K, blocked the effects of LPS. Additionally, LPS treatment induced an increase in protein ubiquitination and a reduction in myotube diameter, both of which are associated with muscular atrophy that is not observed under polymyxin B and 740 Y-P pretreatments. Finally, rainbow trout myotubes expressed the genes tlr1, tlr3, tlr5m, tlr8a1, tlr8a2, tlr9, and tlr22, with significantly increased expressions of tlr5m and tlr9 under LPS stimulation. These results indicate that LPS is an inducer of fish skeletal muscle atrophy and suggest that TLR5M and TLR9 may play important roles in detecting LPS, which supports for the first time the hypothesis that LPS is a direct inducer of skeletal muscle atrophy in teleost species.
Asunto(s)
Lipopolisacáridos/toxicidad , Fibras Musculares Esqueléticas/patología , Oncorhynchus mykiss/fisiología , Transducción de Señal , Animales , Atrofia/inducido químicamente , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/metabolismo , Receptores Toll-Like/metabolismoRESUMEN
Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.