Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34372488

RESUMEN

Nowadays, after suffering a fracture in an upper or lower limb, a plaster cast is placed on the affected limb. It is a very old and efficient technique for recovery from an injury that has not had significant changes since its origin. This project aims to develop a new low-cost smart 3D printed splint concept by using new sensing techniques. Two rapidly evolving Advanced Manufacturing (AM) technologies will be used: 3D scanning and 3D printing, thus combining engineering, medicine and materials evolution. The splint will include new small and lightweight sensors to detect any problem during the treatment process. Previous studies have already incorporated this kind of sensor for medical purposes. However, in this study it is implemented with a new concept: the possibility of applying treatments during the immobilization process and obtaining information from the sensors to modify the treatment. Due to this, rehabilitation treatments like infrared, ultrasounds or electroshock may be applied during the treatment, and the sensors (as it is showed in the study) will be able to detect changes during the rehabilitation process. Data of the pressure, temperature, humidity and colour of the skin will be collected in real time and sent to a mobile device so that they can be consulted remotely by a specialist. Moreover, it would be possible to include these data into the Internet of Things movement. This way, all the collected data might be compared and studied in order to find the best treatment for each kind of injury. It will be necessary to use a biocompatible material, submersible and suitable for contact with skin. These materials make it necessary to control the conditions in which the splint is produced, to assure that the properties are maintained. This development, makes it possible to design a new methodology that will help to provide faster and easier treatment.


Asunto(s)
Impresión Tridimensional , Férulas (Fijadores) , Humedad , Extremidad Inferior , Temperatura
2.
Sensors (Basel) ; 20(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751119

RESUMEN

For certain musculoskeletal complex rupture injuries, the only treatment available is the use of immobilization splints. This type of treatment usually causes discomfort and certain setbacks in patients. In addition, other complications are usually generated at the vascular, muscular, or articular level. Currently, there is a really possible alternative that would solve these problems and even allows a faster and better recovery. This is possible thanks to the application of engineering on additive manufacturing techniques and the use of biocompatible materials available in the market. This study proposes the use of these materials and techniques, including sensor integration inside the splints. The main parameters considered to be studied are pressure, humidity, and temperature. These aspects are combined and analyzed to determine any kind of unexpected evolution of the treatment. This way, it will be possible to monitor some signals that would be studied to detect problems that are associated to the very initial stage of the treatment. The goal of this study is to generate a smart splint by using biomaterials and engineering techniques based on the advanced manufacturing and sensor system, for clinical purposes. The results show that the prototype of the smart splint allows to get data when it is placed over the arm of a patient. Two temperatures are read during the treatment: in contact with the skin and between skin and splint. The humidity variations due to sweat inside the splint are also read by a humidity sensor. A pressure sensor detects slight changes of pressure inside the splint. In addition, an infrared sensor has been included as a presence detector.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Sistema Musculoesquelético/lesiones , Férulas (Fijadores) , Brazo , Materiales Biocompatibles , Humanos , Humedad , Presión , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA