Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Transl Oncol ; 48: 102062, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094511

RESUMEN

Breast cancer remains the most prevalent cancer in women globally, posing significant challenges in treatment due to the inevitable development of resistance to targeted therapies like everolimus, an mTOR inhibitor. While several mechanisms of resistance have been proposed, the role of snoRNAs in this context remains inadequately explored. Our study unveils a novel connection between snoRNAs and everolimus resistance, focusing on the snoRNA U50A. We discovered that U50A negatively regulates mTOR signaling by transcriptionally downregulating mTOR gene expression, which consequently leads to decreased sensitivity to everolimus treatment. Through RNA sequencing, gene set enrichment analyses, and experimental validations, we established that U50A overexpression in breast cancer cells results in mTOR downregulation and subsequently, everolimus desensitization. Clinical results further supported our findings, showing a higher prevalence of everolimus resistance in tumors with elevated U50A expression. Moreover, our results suggest that U50A's effect on mTOR is mediated through the suppression of the transcription factors c-Myc, with a notable impact on cancer cell viability under everolimus treatment. This study not only highlights the complex role of snoRNAs in cancer drug resistance but also proposes U50A as a potential biomarker for predicting everolimus efficacy in breast cancer treatment.

2.
Mil Med Res ; 11(1): 53, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118131

RESUMEN

Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.


Asunto(s)
Daño del ADN , ARN Nucleolar Pequeño , ARN Nucleolar Pequeño/genética , Daño del ADN/fisiología , Humanos , Inestabilidad Genómica
3.
Sci China Life Sci ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38995489

RESUMEN

Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs. Unexpectedly, all of these lncRNAs were dispensable for pluripotency maintenance and proliferation in mouse ESCs when disrupted individually or in combination. Single-cell transcriptomic analysis also showed that the knockout of these lncRNAs has a minimal impact on pluripotency gene expression and cell identity. We further showed that several small hairpin RNAs (shRNAs) previously used to knock down lncRNAs caused the downregulation of pluripotency genes in the corresponding lncRNA-knockout ESCs, indicating that off-target effects likely responsible for the pluripotency defects caused by these shRNAs. Interestingly, linc1343-knockout and linc1343-knockdown ESCs failed to form cystic structures and exhibited high expression of pluripotency genes during embryoid body (EB) differentiation. By reintroducing RNA products generated from the linc1343 locus, we found that two snoRNAs, Snora73a and Snora73b, but not lncRNAs, could rescue pluripotency silencing defects during EB differentiation of linc1343 knockout ESCs. Our results suggest that the 8 previously annotated pluripotency-regulating lncRNAs have no overt functions in conventional ESC culture; however, we identified snoRNA products derived from an annotated lncRNA locus as essential regulators for silencing pluripotency genes.

4.
Clin Transl Oncol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017954

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) is a widespread and serious global malignancy. This study aimed to examine the clinical relevance of serum exosomal SNORD116 and SNORA21 as novel diagnostic biomarkers for NSCLC. METHODS: Serum exosomes from 226 healthy controls and 305 NSCLC patients were isolated by ultracentrifugation. Characterization of exosomes was conducted by qNano, transmission electron microscopy (TEM) and Western immunoblotting. RT-PCR revealed snoRNAs that were differentially expressed. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic performance. RESULTS: In NSCLC patients, the levels of serum exosomal SNORD116 and SNORA21 were significantly reduced compared to those in healthy controls (P < 0.0001 for both). ROC curves showed AUC values of 0.738 and 0.761. By combining SNORD116 and SNORA21 with traditional blood biomarkers CYFRA21-1 and carcinoembryonic antigen (CEA), the AUC increased to 0.917. Moreover, these two exosomal snoRNAs distinguished between patients with metastatic NSCLC (n = 132) and those with non-metastatic NSCLC (n = 173) significantly (P < 0.0001 for both). The ROC curves gave AUC values of 0.743 and 0.694, respectively. The combined analysis raised the AUC to 0.751. The diagnostic power of these two exosomal snoRNAs combined with CYFRA21-1 and CEA increased to 0.784. CONCLUSION: This study demonstrated that serum exosomal SNORD116 and SNORA21 can be used as potential promising non-invasive diagnostic biomarkers for NSCLC.

5.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884719

RESUMEN

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN no Traducido , Animales , Humanos , Empalme Alternativo/genética , Regulación de la Expresión Génica , Edición de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
6.
Parasitology ; : 1-7, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767317

RESUMEN

Small nucleolar RNAs (snoRNAs) are short non-coding RNAs that are abundant in the nucleoli of eukaryotic cells and play a crucial role in various aspects of ribosomal RNA (rRNA) maturation, including modifications such as 2'-O-methylation or pseudouridylation. On the other hand, Giardia duodenalis is a microaerophilic, flagellated, binucleate protozoan responsible for causing giardiasis. Although numerous snoRNAs have been detected in Giardia, their investigation remains limited. Nevertheless, they have been found to play a crucial role in the rRNA precursor processing pathway and influence other cellular functions. In addition, it has been proposed that some microRNAs are generated from these snoRNAs through excision by the Giardia endoribonuclease Dicer. These microRNAs are believed to contribute to the regulation of antigenic variation, which allows the parasite to evade the host immune response. Specifically, they play a role in modulating variant-specific surface proteins (VSPs) and other cysteine-rich surface antigens (CSAs). The main objective of this study was to bring together the available data on snoRNAs in Giardia, uncovering their functions in various processes and their importance on a global scale. In addition, the research delved into potential microRNAs speculated to originate from snoRNAs, exploring their impact on cellular processes.

7.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580917

RESUMEN

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Asunto(s)
Proteína HMGB1 , Metilación de ARN , Humanos , Células HeLa , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metilación , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Metilación de ARN/genética
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612790

RESUMEN

Deregulation of small non-coding RNAs (sncRNAs) has been associated with the onset of metastasis. We evaluated the expression of sncRNAs in patients with early-stage breast cancer, performing RNA sequencing in 60 patients for whom tumor and sentinel lymph node (SLN) samples were available, and conducting differential expression, gene ontology, enrichment and survival analyses. Sequencing annotation classified most of the sncRNAs into small nucleolar RNA (snoRNAs, 70%) and small nuclear RNA (snRNA, 13%). Our results showed no significant differences in sncRNA expression between tumor or SLNs obtained from the same patient. Differential expression analysis showed down-regulation (n = 21) sncRNAs and up-regulation (n = 2) sncRNAs in patients with locoregional metastasis. The expression of SNHG5, SNORD90, SCARNA2 and SNORD78 differentiated luminal A from luminal B tumors, whereas SNORD124 up-regulation was associated with luminal B HER2+ tumors. Discriminating analysis and receiver-operating curve analysis revealed a signature of six snoRNAs (SNORD93, SNORA16A, SNORD113-6, SNORA7A, SNORA57 and SNORA18A) that distinguished patients with locoregional metastasis and predicted patient outcome. Gene ontology and Reactome pathway analysis showed an enrichment of biological processes associated with translation initiation, protein targeting to specific cell locations, and positive regulation of Wnt and NOTCH signaling pathways, commonly involved in the promotion of metastases. Our results point to the potential of several sncRNAs as surrogate markers of lymph node metastases and patient outcome in early-stage breast cancer patients. Further preclinical and clinical studies are required to understand the biological significance of the most significant sncRNAs and to validate our results in a larger cohort of patients.


Asunto(s)
Neoplasias de la Mama , ARN Pequeño no Traducido , Humanos , Femenino , Neoplasias de la Mama/genética , ARN Pequeño no Traducido/genética , Genes Reguladores , Metástasis Linfática/genética , ARN Nucleolar Pequeño/genética
9.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38626213

RESUMEN

Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.


Asunto(s)
ARN Nucleolar Pequeño , ARN no Traducido , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/genética , ARN Ribosómico/genética , Intrones
10.
Cancer Cell Int ; 24(1): 55, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311725

RESUMEN

BACKGROUND: Emerging data point to the critical role of snoRNA in the emergence of different types of cancer, but scarcely in breast cancer (BC). This study aimed to clarify the differential expressions and potential diagnostic value of SNORD16, SNORA73B, SCARNA4, and SNORD49B in BC. METHODS: We screened differential snoRNAs in BC tissues and adjacent tissues through SNORic datasets, and then we further verified them in the plasma of BC patients and healthy volunteers by quantitative polymerase chain reaction (qPCR). RESULTS: These four snoRNAs: SNORD16, SNORA73B, SCARNA4, and SNORD49B were considerably more abundant in cancerous tissues than in neighboring tissues in the TCGA database. Their plasma levels were also higher in BC and early-stage BC patients when compared to healthy controls. Furthermore, the ROC curve demonstrated that BC (AUC = 0.7521) and early-stage BC (AUC = 0.7305) might be successfully distinguished from healthy people by SNORD16, SNORA73B, SCARNA4, and SNORD49B. CONCLUSION: Plasma snoRNAs: SNORD16, SNORA73B, SCARNA4, and SNORD49B were upregulated in BC and early-stage BC and can be used as potential diagnostic markers for BC and early-stage BC.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38394352

RESUMEN

Aging is a multifactorial process characterized by an age-related decline in organismal fitness. This deterioration is the major risk factor for chronic diseases such as cardiovascular pathologies, neurodegeneration, or cancer, and it represents one of the main challenges of modern society. Therefore, understanding why and how we age would be a fundamental pillar to design strategies to promote a healthy aging. In the last decades, the study of the molecular bases of disease has been revolutionized by the discovery of different types of noncoding RNAs (ncRNAs) with regulatory potential. In this work, we will review the implication of ncRNAs in aging, with the aim to provide a first approach to the different aging-associated ncRNAs, their mechanism of action, and their potential relevance as therapeutic targets and disease biomarkers.


Asunto(s)
Longevidad , MicroARNs , Longevidad/genética , ARN no Traducido/genética , MicroARNs/genética
12.
Cancer Cell Int ; 24(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167096

RESUMEN

PURPOSE: The alterations of RNA profile in tumor-educated platelets (TEPs) have been described as a novel biosource for cancer diagnostics. This study aimed to explore the potential snoRNAs in TEP as biomarkers for diagnostics of hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC). METHODS: Platelets were isolated using low-speed centrifugation and subjected to a quantitative polymerase chain reaction (qPCR) for snoRNAs detection. RESULTS: Down-regulated SNORD12B and SNORD14E as well as up-regulated SNORA63 were identified in TEP from HBV-related HCC, which could act as diagnostic biomarkers for HBV-related HCC as well as the early disease. Besides, TEP SNORD12B, SNORD14E, and SNORA63 facilitate the diagnostic performance of AFP and achieve favorable diagnostics efficiency for HBV-related HCC when combined with platelet parameters. CONCLUSIONS: Aberrant expression of SNORD12B, SNORA63, and SNORD14E in TEPs could serve as the novel and non-invasive biomarkers for HBV-related HCC diagnosis.

13.
Trends Genet ; 39(12): 908-923, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783604

RESUMEN

Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.


Asunto(s)
ARN Largo no Codificante , ARN Nucleolar Pequeño , Animales , ARN Nucleolar Pequeño/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Genoma , Mamíferos/genética
14.
Wiley Interdiscip Rev RNA ; : e1818, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37722601

RESUMEN

The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.

15.
Cancer Cell Int ; 23(1): 136, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443032

RESUMEN

BACKGROUND: Accumulating evidence has confirmed the role of snoRNAs in a variety of cancer, but rare in renal cell carcinoma (RCC). This study aims to clarify the role of snoRNAs in RCC tumorigenesis and their potential as novel tumor biomarkers. MATERIALS AND METHODS: The snoRNA expression matrix was obtained from the public TCGA and SNORic databases. SNORD15A, SNORD35B and SNORD60 were selected and validated by qPCR, then analyzed combined with related clinical factors using T-test and ROC curve. RESULTS: All three snoRNAs: SNORD15A, SNORD35B and SNORD60 were significantly upregulated in cancer tissues compared to adjacent tissues from TCGA or FFPE detection. These three snoRNAs were also increased in urinary sediment (US) of RCC as well as the early-stage RCC patients compared with the healthy controls. In addition, RNase stability experiments confirmed their stable existence in US. Meanwhile, the ROC curve shows that SNORD15A, SNORD35B and SNORD60 could effectively distinguish RCC (AUC = 0.7421) and early-stage RCC (AUC = 0.7465) from healthy individuals. CONCLUSION: SNORD15A, SNORD35B and SNORD60 were upregulated in tissues and US of RCC, serving as novel potential biomarkers for RCC diagnosis.

16.
Noncoding RNA ; 9(3)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37368335

RESUMEN

The ribosome is one of the largest complexes in the cell. Adding to its complexity are more than 200 RNA modification sites present on ribosomal RNAs (rRNAs) in a single human ribosome. These modifications occur in functionally important regions of the rRNA molecule, and they are vital for ribosome function and proper gene expression. Until recent technological advancements, the study of rRNA modifications and their profiles has been extremely laborious, leaving many questions unanswered. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that facilitate and dictate the specificity of rRNA modification deposition, making them an attractive target for ribosome modulation. Here, we propose that through the mapping of rRNA modification profiles, we can identify cell-specific modifications with high therapeutic potential. We also describe the challenges of achieving the targeting specificity needed to implement snoRNAs as therapeutic targets in cancers.

17.
Exp Cell Res ; 429(2): 113686, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307941

RESUMEN

BACKGROUND: Prostate cancer (PCa) is one of the most deadly and metastatic cancers of the urinary tract. Latest studies have confirmed that long non-coding RNAs (lncRNAs) play a crucial role in a variety of cancers. Some of these lncRNAs code for small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which exert some value in predicting the prognosis of certain cancer patients, but little is known regarding the function of SNHGs within the PCa. AIM OF THE STUDY: To explore the expression distribution and differential analysis of SNHGs in different tumors using RNA-seq and survival data from TCGA and GTEx, and to assess the potential impacts of the lncRNA SNHG25 on human PCa. To validate the expression of SNHG25 using experimental data and to investigate in detail its particular molecular biological function on PCa both in vivo and in vitro. METHODS: LncRNA SNHG25 expression was analyzed by bioinformatic prediction and qPCR. CCK-8, EdU, transwell, wound healing, and western blotting assays were conducted to investigate the main role of lncRNA SNHG25 in PCa. Xenograft tumour growth model in nude mice was surveyed by in vivo imaging and Ki-67 staining. AKT pathway activator (SC79) was used to verify the interaction among SNHG25 and PI3K/AKT signaling pathway. RESULTS: Bioinformatics analysis and experimental research illuminated that the expression of lncRNA SNHG25 was observably up-regulated in PCa tissues and cells. Moreover, SNHG25 knockdown restrained PCa cell proliferation, invasion and migration, while promoting apoptosis. Xenografts model confirmed that the si-SNHG25 group had a significant inhibitory effect on PCa tumour growth in vivo. Additionally, a series of gain-of-function analyses suggested that SNHG25 could activate the PI3K/AKT pathway to accelerate PCa progression. CONCLUSIONS: These in vitro and in vivo findings demonstrate that SNHG25 is highly expressed in PCa and facilitates PCa development through regulation of PI3K/AKT signaling pathway. SNHG25 acts as an oncogene to predict tumour malignancy and survival in PCa patients and may therefore become a promising potential molecular target for early detection and therapy of lethal PCa.


Asunto(s)
Neoplasias de la Próstata , ARN Largo no Codificante , Masculino , Animales , Ratones , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Nucleolar Pequeño/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética
18.
Biomed Pharmacother ; 161: 114519, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906975

RESUMEN

Small nucleolar RNAs (snoRNAs) are non-coding RNA molecules that range from 60 to 300 nucleotides in length and are primarily located in the nucleoli of cells. They play a critical role in modifying ribosomal RNA and can also regulate alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression can affect numerous cellular processes, including cell proliferation, apoptosis, angiogenesis, fibrosis, and inflammation, making them a promising target for diagnostics and treatment of various human pathologies. Recent evidence suggests that abnormal snoRNA expression is strongly associated with the development and progression of several lung diseases, such as lung cancer, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension, as well as COVID-19. While few studies have shown a causal relationship between snoRNA expression and disease onset, this research field presents exciting opportunities for identifying new biomarkers and therapeutic targets in lung disease. This review discusses the emerging role and molecular mechanisms of snoRNAs in the pathogenesis of lung diseases, focusing on research opportunities, clinical studies, biomarkers, and therapeutic potential.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Neoplasias Pulmonares/genética , ARN Mensajero , Prueba de COVID-19
19.
Atherosclerosis ; 374: 74-86, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36725418

RESUMEN

Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.


Asunto(s)
Aterosclerosis , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Aterosclerosis/patología , Regulación de la Expresión Génica , ARN Largo no Codificante/genética
20.
Mol Carcinog ; 62(4): 413-426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36562475

RESUMEN

Endometrial carcinoma is a common gynecological malignant tumor, small nucleolar RNAs (snoRNAs) are involved in cancer development. However, researches on the roles of snoRNAs in endometrial carcinoma are limited. The expression levels of snoRNAs in endometrial cancer tissues were analyzed using The Cancer Genome Atlas (TCGA) database. Antisense oligonucleotides (ASOs) and plasmids were used for transfection. Moreover, CCK-8, EdU, wound-healing assay, transwell, cell apoptosis, western blotting, and xenograft model were employed to examine the biological functions of related molecules. real-time reverse transcription polymerase chain reaction and western blotting were performed to detect messenger RNA (mRNA) and protein levels. Including bioinformatics, fluorescence in situ hybridization, RNA pulldown, actinomycin D and RTL-P assays were also carried out to explore the molecular mechanism. Analysis of data from TCGA showed that the expression level of small nucleolar RNA, C/D box 60 (SNORD60) in endometrial cancer tissues is observably higher than that in normal endometrial tissues. Further research suggested that SNORD60 played a carcinogenic role both in vitro and in vivo, and significantly upregulated the expression of PIK3CA. However, the carcinogenic effects can be reversed by knocking down fibrillarin (FBL) or PIK3CA. SNORD60 forms complexes by binding with 2'-O-methyltransferase fibrillarin, thus catalyzes the 2'-O-methylation (Nm) modification of PIK3CA mRNA and modulates the PI3K/AKT/mTOR signaling pathway, so as to promote the development of endometrial cancer. In short, SNORD60 might become a new biomarker for the therapy of endometrial cancer in the future and provide new strategies for diagnosis and treatment.


Asunto(s)
Neoplasias Endometriales , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Endometriales/patología , Carcinogénesis/genética , Carcinogénesis/patología , ARN Mensajero/genética , Transformación Celular Neoplásica , Fosfatidilinositol 3-Quinasa Clase I/genética , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA