Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hazard Mater ; 459: 132286, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37595464

RESUMEN

The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.


Asunto(s)
Contaminación de Medicamentos , Microbiota , Adulto , Niño , Humanos , Consorcios Microbianos , Reproducción , Suelo
2.
Ecology ; 104(2): e3883, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36208059

RESUMEN

Mounting evidence suggests that plant-soil feedbacks (PSF) may determine plant community structure. However, we still have a poor understanding of how predictions from short-term PSF experiments compare with outcomes of long-term field experiments involving competing plants. We conducted a reciprocal greenhouse experiment to examine how the growth of prairie grass species depended on the soil communities cultured by conspecific or heterospecific plant species in the field. The source soil came from monocultures in a long-term competition experiment (LTCE; Cedar Creek Ecosystem Science Reserve, MN, USA). Within the LTCE, six species of perennial prairie grasses were grown in monocultures or in eight pairwise competition plots for 12 years under conditions of low or high soil nitrogen availability. In six cases, one species clearly excluded the other; in two cases, the pair appeared to coexist. In year 15, we gathered soil from all 12 soil types (monocultures of six species by two nitrogen levels) and grew seedlings of all six species in each soil type for 7 weeks. Using biomass estimates from this greenhouse experiment, we predicted coexistence or competitive exclusion using pairwise PSFs, as derived by Bever and colleagues, and compared model predictions to observed outcomes within the LTCE. Pairwise PSFs among the species pairs ranged from negative, which is predicted to promote coexistence, to positive, which is predicted to promote competitive exclusion. However, these short-term PSF predictions bore no systematic resemblance to the actual outcomes of competition observed in the LTCE. Other forces may have more strongly influenced the competitive interactions or critical assumptions that underlie the PSF predictions may not have been met. Importantly, the pairwise PSF score derived by Bever et al. is only valid when the two species exhibit an internal equilibrium, corresponding to the Lotka-Volterra competition outcomes of stable coexistence and founder control. Predicting the other two scenarios, competitive exclusion by either species irrespective of initial conditions, requires measuring biomass in uncultured soil, which is methodologically challenging. Subject to several caveats that we discuss, our results call into question whether long-term competitive outcomes in the field can be predicted from the results of short-term PSF experiments.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Retroalimentación , Plantas , Nitrógeno/análisis
3.
Sci Total Environ ; 863: 160831, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526183

RESUMEN

The occurrence and development of antibiotic resistance genes (ARGs) in pathogens poses serious threatens to global health. Agricultural soils provide reservoirs for pathogens and ARGs, closely related to public health and food safety. Especially, metals stress provides more long-standing selection pressure for ARGs, and climate change is a "threat multiplier" for the spread of ARGs. However, little is known about the impact of metals contamination on pathogens and ARGs in agricultural soils and their sensitivity to ongoing climate changes. To fill this gap, a pot experiment was conducted in open-top chambers (OTCs) to investigate the influence of mercury (Hg) contamination on the distribution of soil pathogens and ARGs under ambient and elevated CO2 concentration. Results showed that the relative abundance of common plant and human pathogens increased significantly in Hg-contaminated soil under two CO2 concentrations. Hg contamination was a positive effector of the activation of efflux pumps and offensive virulence factors (adhere and secretion system) under two CO2 levels. Activation of efflux pumps caused by Hg contamination might contribute to changes of virulence or fitness of certain pathogens. Overall, our study emphasizes the critical role of efflux pumps as an intersection of antibiotic resistance and pathogen's virulence under Hg stress.


Asunto(s)
Mercurio , Humanos , Mercurio/toxicidad , Dióxido de Carbono , Virulencia , Farmacorresistencia Microbiana/genética , Suelo , Antibacterianos/farmacología , Genes Bacterianos , Microbiología del Suelo
4.
Microbiol Spectr ; 10(4): e0093322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35852313

RESUMEN

Imbalances of soil available nutrients and soilborne diseases have seriously restricted the productivity of crops and jeopardized food security worldwide. Pyrroloquinoline quinone (PQQ), a redox cofactor in some bacteria involved in glucose metabolism and phosphorus mineralization, could be anticipated to alter soil ecosystems to a certain extent. However, there is limited information on PQQ defending soilborne pathogens and regulating soil main nutrients. Here, a pot experiment based on mono-cropping soils of pepper was conducted to examine the effects of PQQ amendment on reconstructing soil microbial communities and soil nutrients under aerobic/anaerobic conditions comprising three treatments, namely, control, PQQ (aerobic), and FL-PQQ (anaerobic). The results revealed that soil microbial community composition and soil nutrients were distinctly altered by PQQ regimes. Compared to control, PQQ treatment significantly increased the content of soil available phosphorus (AP), while FL_PQQ treatment strongly improved the content of soil available nitrogen (AN). In terms of pathogens, relative to control, both PQQ treatments suppressed the abundances of pathogens, of which FL_PQQ treatment significantly decreased the abundance of the pathotrophic fungal by 64% and the abundance of Fusarium oxysporum by 57%, largely attributed to the increase of organic acid generators (Oxobacter, Hydrogenispora) and potential antagonists (Bacillus, Talaromyces). Structural equation modeling (SEM) showed that PQQ regimes suppressed pathogens by indirectly regulating soil physicochemical properties and microbial communities. Overall, we proposed that PQQ application both in aerobic/anaerobic conditions could improve soil available nutrients and suppress soil pathogens in pepper monocropping soils. IMPORTANCE The attention to PQQ (pyrroloquinoline quinone) effect on soil nutrients and pathogens was less paid in monocropping soils. However, the underlying microbial interacting mechanism remains unclear. Adopting a novel external bio-additive, the effects of PQQ on soil main nutrients and the pathotrophic fungal under aerobic and anaerobic regimes will be investigated, which would help to improve soil quality health. Our main conclusion was that PQQ would help to remediate monocropping obstacle soils in terms of soil nutrients and soil pathogens by associating with the microbial community, and anaerobic PQQ application more favored amelioration of continuous obstacle soils. These results will benefit the health and sustainable development of pepper production as well as other greenhouse vegetable production.


Asunto(s)
Microbiota , Suelo , Anaerobiosis , Nutrientes , Cofactor PQQ/química , Cofactor PQQ/metabolismo , Fósforo , Suelo/química
5.
New Phytol ; 231(6): 2297-2307, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891310

RESUMEN

The soil pathogen-induced Janzen-Connell (JC) effect is considered as a primary mechanism regulating plant biodiversity worldwide. As predicted by the framework of the classic plant disease triangle, severity of plant diseases is often influenced by temperature, yet insufficient understanding of how increasing temperatures affect the JC effect contributes uncertainty in predictions about how global warming affects biodiversity. We conducted a 3-yr field warming experiment, combining open-top chambers with pesticide treatment, to test the effect of elevated temperatures on seedling mortality of a temperate tree species, Prunus padus, from a genus with known susceptibility to soil-borne pathogens. Elevated temperature significantly increased the mortality of P. padus seedlings in the immediate vicinity of parent trees, concurrent with increased relative abundance of pathogenic fungi identified to be virulent to Prunus species. Our study offers experimental evidence suggesting that global warming significantly intensifies the JC effect on a temperate tree species due to increased relative abundance of pathogenic fungi. This work advances our understanding about changes in the JC effect linked to ongoing global warming, which has important implications for predicting tree diversity in a warmer future.


Asunto(s)
Suelo , Árboles , Biodiversidad , Retroalimentación , Bosques , Plantones
6.
Ciênc. rural (Online) ; 51(1): e20200440, 2021. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1142738

RESUMEN

ABSTRACT: Biofumigation involves the release of volatile biocidal compounds in the soil through the incorporation of certain plants and their residues. Species of the Brassicaceae family are the most widely used plants for biofumigation. These plants contain glucosinolates, which produce compounds, such as isothiocyanates, following enzymatic hydrolysis, with scientifically proven fungicidal effects. The most commonly used brassica species belong to the genera Brassica, Raphanus, Sinapis, and Eruca. In addition to the release of compounds in the soil, complementary mechanisms, such as the supply of organic matter and nutrients, and improvement of the soil structure, also play a role in biofumigation. In the past two decades, several studies on the use of brassica residues in biofumigation have been published, showing promising results in the management of soil pathogens (fungi and oomycetes, nematodes, bacteria, and protozoa), weed seeds, and insects. Usage of new biofumigation compounds has also been validated in recent years, including the development of patented technological products such as liquid formulations and pellets. The objective of this article was to review these new developments, beginning with concepts related to biofumigation, and to discuss the mechanisms of action of compounds involving brassica species and the recommendations on usage. Promising examples of the use of this technique are also presented, further detailing the advances in basic and applied knowledge on the subject.


RESUMO: A biofumigação consiste na liberação de compostos biocidas voláteis no solo a partir da incorporação de determinadas plantas e de seus resíduos. As espécies da família Brassicaceae são as plantas mais utilizadas na biofumigação. Em sua constituição, possuem os glucosinolatos que, após hidrólise enzimática, produzem compostos como os isotiocianatos com efeito biofungicida comprovado cientificamente. As espécies de brássicas mais utilizadas pertencem aos gêneros Brassica, Raphanus, Sinapis e Eruca. Além da liberação de compostos no solo, mecanismos complementares como o fornecimento de matéria orgânica, nutrientes e melhoria da estrutura do solo, também desempenham papel complementar na biofumigação. Diversos estudos foram publicados nas últimas duas décadas com a utilização de resíduos de brássicas na biofumigação e apresentaram resultados promissores no manejo de patógenos de solo (fungos e oomicetos, nematóides, bactérias e protozoários), sementes de plantas daninhas e insetos. Novas formas de utilização também foram validadas nos últimos anos, inclusive com o desenvolvimento de produtos tecnológicos patenteados como formulações líquidas e pellets. Nesta revisão, objetivamos apresentar estes novos desdobramentos iniciando com os conceitos relacionados à biofumigação. Em seguida, apresentamos os mecanismos de ação e compostos envolvidos; as espécies de brássicas, produtos e recomendações para sua utilização; e exemplos promissores de adoção da técnica a nível mundial. Pretende-se, dessa forma, detalhar os avanços no conhecimento básico e aplicado do assunto.

7.
Int J Biol Macromol ; 154: 1237-1244, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730977

RESUMEN

Plant seeds can exudate active molecules with inhibitory effects against several soil pathogens, including nematodes. This study aimed to characterize and evaluate the nematicidal properties against Meloidogyne incognita of exuded proteins from Moringa oleifera seeds. M. oleifera seeds were soaked in distilled water, and exudates were harvested and analyzed for the presence of defense proteins and anthelmintic activity. Enzymatic assays revealed the existence of PR-proteins such as ß-1,3-glucanases (0.18 ± 0.003 nkatal mg-1 of protein), chitinases (0.22 ± 0.004 nkatal mg-1 of protein), proteases (261.30 ± 6.405 AU mg-1 of protein min-1), serine (190.30 ± 5.574 IA mg-1 of protein) and cysteine (231.70 ± 0.923 IA mg-1 of protein), protease inhibitors. The exuded proteins presented ovicidal activity and caused 100% mortality of second-stage juveniles (J2s). Scanning electron microscopy (SEM) revealed deleterious effects on M. incognita eggs, such as invaginations, cracks, scratched surface, and loss of internal content. These findings confirm the presence of anthelmintic proteins in M. oleifera seed exudate, possibly involved in plant defense during seed germination. Besides this, the exuded proteins exhibited strong biotechnological potential for use in the biocontrol of M. incognita infections, which are responsible for millions of dollars in staple crop losses every year.


Asunto(s)
Antinematodos/farmacología , Moringa oleifera/química , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/farmacología , Semillas/química , Tylenchoidea/efectos de los fármacos , Animales , Óvulo/efectos de los fármacos , Extractos Vegetales/farmacología
8.
Ecology ; 99(3): 597-606, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29493787

RESUMEN

Understanding why some species are rare while others are common remains a central and fascinating question in ecology. Recently, interactions with soil organisms have been shown to affect local abundances of plant species within communities, however, it is not known whether they might also drive patterns of rarity at large scales. Further, little is known about the specificity of soil-feedback effects, and whether closely related plants share more soil pathogens than more distantly related plants. In a multi-species soil-feedback experiment (using 19 species) we tested whether regionally and locally rare species differed in their response to soil biota. Regional rarity was measured using range size or IUCN status and local rarity by typical abundance within an area. All species were grown on soils trained by a variety of regionally and locally rare and common species, which also varied in their degree of relatedness to the target. We found that, in general, regionally rare species suffered more than twice as much from soil biota than regionally common species. Soil cultured by regionally rare species also had a more negative effect on subsequent plant growth, suggesting they may have also accumulated more pathogens. Local rarity did not predict feedback strength. Further, soil trained by closely related plants had a more negative effect on growth than soil trained by distant relatives, which indicates a phylogenetic signal in the host range of soil biota. We conclude that soil biota may well contribute to plant rarity at large spatial scales, which offers a novel explanation for plant rarity and commonness. Moreover, our results show that phylogenetic relatedness between plants was a good predictor of the likelihood that two plant species interacted negatively via soil biota, which might mean that soil pathogens could prevent the coexistence of closely related plants and could drive patterns of phylogenetic overdispersion. Our results suggest that soil pathogens could restrict the ability of rare species to shift their ranges and might need to be considered by conservation biologists seeking to protect populations of rare plants.


Asunto(s)
Plantas , Suelo , Filogenia , Desarrollo de la Planta , Microbiología del Suelo
9.
AoB Plants ; 9(1): plx005, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28702162

RESUMEN

Growing evidence suggests that plant-soil interactions have important implications for plant community composition. However, the role of phylogenetic relatedness in governing interactions between plants and soil biota is unclear, and more case studies are needed to help build a general picture of whether and how phylogeny might influence plant-soil interactions. We performed a glasshouse experiment to test whether degree of phylogenetic relatedness between Aquilegia canadensis and six co-occurring heterospecifics affects A. canadensis biomass through soil legacy effects. We also compared performance of A. canadensis in soils conditioned by invasive Alliaria petiolata versus native heterospecifics, hypothesizing that conditioning by A. petiolata would suppress the performance of the focal native plant. A. canadensis performed significantly better in distant relatives' soils than in close relatives' soils, and this effect disappeared with soil sterilization, consistent with close relatives sharing similar pathogens. Contrary to our expectations, soils conditioned by the invasive species A. petiolata versus by native species had similar effects on A. canadensis. The greater performance of A. canadensis in soils of more versus less distant relatives is consistent with a hypothesis of phylogenetically constrained pathogen escape, a phenomenon expected to promote coexistence of phylogenetically distant species. However, pairwise plant-soil feedback experiments are needed to create a stronger coexistence prediction.

10.
Ecol Evol ; 6(23): 8412-8422, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28031793

RESUMEN

Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

11.
Oecologia ; 179(2): 609-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26078006

RESUMEN

Global climate change is altering thermal cycles in soils during late winter, a transition that may directly threaten seed survival via abiotic stress, facilitate infection by soil-borne pathogens, or both. Using field-collected soil and seeds of the perennial bunchgrass Elymus canadensis, we tested the hypothesis that soil freeze-thaw events limit survival within the soil through direct effects on seed persistence and amplification of soil pathogen attack using a factorial experiment that manipulated freeze-thaw cycles (constant freeze vs. freeze-thaw) and fungicide addition. Freeze-thaw treatment resulted in lower seedling emergence and delayed emergence time relative to constant-freeze controls. Fungicide-treated soils had greater emergence relative to untreated soils; the lowest seedling emergence was observed in no-fungicide, freeze-thaw-treated soils (<1 %). The strong effects of thermal variability and fungi on seeds were mitigated through interactions at the seed-soil interface, as subsequent experiments showed that fungicide and freeze-thaw treatments alone do not influence dormancy. Our work demonstrates that changes in freeze-thaw events directly limit seedling emergence, delay seedling phenology, and provide opportunities for fungal pathogens to limit seed persistence. As recruitment from seeds is a key determinant of plant population dynamics, these results suggest that climatic variation may generate unique consequences for populations under changing climate regimes.


Asunto(s)
Clima , Hongos/fisiología , Poaceae/crecimiento & desarrollo , Semillas/fisiología , Cambio Climático , Congelación , Poaceae/microbiología , Dinámica Poblacional , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/microbiología , Microbiología del Suelo
12.
Lett Appl Microbiol ; 59(2): 161-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24713043

RESUMEN

UNLABELLED: The effect of the terpenoids gossypol, 6-methoxygossypol, 6,6'-dimethoxygossypol, gossypolone and apogossypolone on growth of fungal soil pathogens was investigated. The compounds were tested at a concentration of 100 µg ml(-1) in a Czapek Dox agar medium at 25°C. Gossypol, gossypolone and apogossypolone demonstrated strong growth inhibitory activity (≥90%) against Pythium irregulare, Pythium ultimum and Fusarium oxysporum. These same terpenoids provided good growth inhibition against most Rhizoctonia solani isolates. Methylated gossypol derivatives generally yielded reduced growth inhibition against the tested fungi compared with gossypol. Dose-response effects of gossypol, gossypolone and apogossypolone were determined over a concentration range of 5-100 µg ml(-1) against P. irregulare CR1, P. ultimum ATCC 56081 and R. solani CR15. At lower concentrations, gossypol proved to be a more potent growth inhibitor of P. irregulare (ED50  = 4 µg ml(-1) ) and P. ultimum (ED50  = 13·2 µg ml(-1) ) than the other tested compounds. Rhizoctonia solani CR15 was more resistant to growth inhibitory effects of all tested terpenoids (ED50  = 35-43 µg ml(-1) ). SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that gossypol is an effective natural antimicrobial agent against a wide range of potential fungal pathogens of cotton. Relative to gossypol, methylated gossypol derivatives that are also found naturally in root tissue were less effective at inhibiting the growth of soil fungal pathogens. However, by virtue of their significant concentration in root tissue, they still may contribute to cotton defence.


Asunto(s)
Gossypium/microbiología , Gosipol/análogos & derivados , Raíces de Plantas/microbiología , Antifúngicos/farmacología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Gosipol/farmacología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Naftalenos/farmacología , Fenoles/farmacología , Enfermedades de las Plantas/microbiología , Pythium/efectos de los fármacos , Pythium/crecimiento & desarrollo , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo
14.
Ecol Lett ; 16(10): 1277-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23953187

RESUMEN

Many exotic plant invaders pose a serious threat to native communities, but little is known about the dynamics of their impacts over time. In this study, we explored the impact of an invasive plant Heracleum mantegazzianum (giant hogweed) at 24 grassland sites invaded for different periods of time (from 11 to 48 years). Native species' richness and productivity were initially reduced by hogweed invasion but tended to recover after ~30 years of hogweed residence at the sites. Hogweed cover declined over the whole period assessed. A complementary common garden experiment suggested that the dynamics observed in the field were due to a negative plant-soil feedback; hogweed survival and biomass, and its competitive ability were lower when growing in soil inocula collected from earlier-invaded grasslands. Our results provide evidence that the initial dominance of an invasive plant species and its negative impact can later be reversed by stabilising processes.


Asunto(s)
Ecosistema , Heracleum/fisiología , Especies Introducidas , Animales , Poaceae/fisiología , Microbiología del Suelo , Tiempo
15.
Oecologia ; 76(2): 313-320, 1988 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28312214

RESUMEN

To study the origin of replant disease of Ammophila arenaria (L.) Link the growth and development in sand originating from the rhizosphere of a natural Ammophila vegetation was compared with the growth in sand from the sea-floor. In a greenhouse experiment, the growth of Ammophila seedlings in rhizosphere sand, when compared with that in sea sand, was significantly reduced. As sterilization by means of gamma-irradiation increased the biomass production of Ammophila seedlings significantly, it was concluded that the rhizosphere sand contained biotic factors that were harmful to Ammophila. In rhizosphere sand the roots of Ammophila were brown and poorly developed, and the specific uptake rates of N, P and K were reduced. The shoot weight proportion of the total plant dry matter was hardly influenced. In an outdoor experiment with Ammophila seedlings and cuttings, using both sands, the mortality was high and the plants were feeble in rhizosphere sand whereas plants in sea sand grew vigorously. It seems plausible that the plants in rhizophere sand were dessicated because the root system was shallow and badly developed. In the greenhouse experiments, Ammophila cuttings were less sensitive to the inhibiting factors in the rhizosphere than seedlings. This was confirmed in the outdoor experiment. Calammophila baltica (Fluegge ex Schrader) Brand, however, was hardly affected by the harmful biotic factors in the greenhouse. These results are discussed with reference to the ecology of Ammophila. It is assumed that the catching of fresh windblown sand provides Ammophila with a way to escape from harmful biotic soil factors, and it was concluded that degeneration of Ammophila is caused mainly by self-intolerance due to these biotic soil factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA