Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38865700

RESUMEN

In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.

2.
ChemSusChem ; 17(16): e202301808, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507195

RESUMEN

The rise in the energy demand, the need to decrease the use of fossil fuels, expanding investments in renewable energy and boosting the electric vehicle market, opens the door to new technologies in clean energy accumulators. Lithium-ion batteries are the most advanced technology in the market but have safety concerns due to the flammability of the electrolyte, which opens the door to innovations. One of these innovations is the solid-state batteries (SSB), which, by using solid electrolytes, do not have the flammable risk, bringing safety to users while reaching similar energy and power densities. This work presents a review about SSB, based on qualitative and exploratory research, using the Web of Science (WoS) platform. Keywords used to gather information from the database were "solid state batteries" and "electrolytes". Only publications from 2018 to 2023 were selected. The main research focus is to solve the challenges posed by the different physical-chemical phenomena of the SSB. This work focuses on the general comprehension of the SSB batteries, what are the factors that can affect it and the main solutions presented in the literature the last five years.

3.
Univ. sci ; 18(2): 173-180, May-Aug. 2013. ilus, tab
Artículo en Español | LILACS | ID: lil-689628

RESUMEN

Se incrementó la conductividad iónica delelectrolito sólido polimérico (PEO)10CF3COONa medianteformación de nuevos compositos, adicionando partículasde óxido de aluminio (Al2O3) como relleno. Los compositosfueron preparados por disolución en solvente líquido y lacaracterización por espectroscopia de impedancias (EI)con configuración de electrodos Pt/electrolito/Pt. Reducciónde hasta dos órdenes de magnitud en la resistencia, seobservó en diagramas de Nyquist; combinando polióxido deetileno (PEO) con trifluoroacetato de sodio (CF3COONa).Al agregar partículas de Al2O3, la reducción en resistenciallego a ser hasta de tres órdenes de magnitud, a temperaturaambiente. Los gráficos de conductividad DC en función dela concentración, mostraron incremento de conductividadiónica a bajas concentraciones de alúmina. El compositoconductor iónico sintetizado mostró conductividadde 2.00x10-5 Scm-1 temperatura ambiente y 7.70x10-4Scm-1, temperatura de 383 K. Se presentó comportamientoArrhenius en dos regiones de diagramas de conductividadcon temperatura, indicando proceso térmicamenteactivado. Para altas concentraciones de Al2O3 se observócomportamiento Vogel-Tamman-Fulcher (VTF). Lasvariaciones de conductividad con concentración de Al2O3,están asociadas con número de sitios involucrados entrasporte iónico, a través de interacciones Lewis ácido–base,entre partículas de Al2O3 y especies iónicas del electrolito...


To increase the ionic conductivity of solid polymer electrolyte, (PEO)10CF3COONa, we formed newcomposites by adding alumina particles as a filler. We prepared these composites by dissolving them ina liquid solvent, and characterized them through impedance spectroscopy (IS), using a Pt/electrolyte/Ptelectrode configuration. The combination of polyethylene oxide (PEO) with sodium trifluoroacetate(CF3COONa) produced a reduction in resistance of up to two orders of magnitude in Nyquist plots, andup to three orders of magnitude when we added Al2O3 particles at room temperature. DC conductivityconcentration graphs show an increase in the ionic conductivity with low alumina concentrations. Thenew synthesized ionic conductor composite presented conductivity values of 2.00x10-5 Scm-1 at roomtemperature and of 7.70x10-4 Scm-1 at a temperature of 383 K. Two sections of the conductivity diagramsalso evidenced a temperature induced Arrhenius behavior, indicating a thermally activated process. Higherconcentrations of Al2O3 induced a Vogel-Tamman-Fulcher (VTF) behavior. Conductivity variationsproduced by Al2O3 concentration are linked to the number of sites involved in ion transport betweenAl2O3 ionic electrolyte species through Lewis acid-base interactions...


Foi Aumentada a condutividade iônica doeletrólito de polímero sólido (PEO)10CF3COONa, através daformação de um novo compósito, adicionando partículas deóxido de alumínio (Al2O3). Os compósitos foram preparadospor dissolução num solvente líquido e a caracterizaçãofoi feita por espectroscopia de impedância (EI) com aconfiguração utilizando eletrodo de platinum - Pt/eletrólito/Pt. A redução de até duas ordens de grandeza na resistênciaé observada em diagraamas de Nyquist quando se combinapoli (óxido de etileno) (PEO) com trifluoroacetato de sodioCF3COONa. Quando as partículas de Al2O3 são adicionadasao composição, é observado uma redução na resistênciade três ordens de grandeza à temperatura ambiente. Osgráficos do logaritmo da condutividade dc em função daconcentração, mostra um aumento da condutividade parabaixas concentrações de alumína. Do compósito condutorde íons sintetizado, apresenta valores de condutividade2.00x10-5 Scm-1 à temperatura ambiente e 7,70x10-4 Scm-1a uma temperatura de 383 K. Um comportamento do tipoArrhenius é apresentado em duas regiões dos diagramas decondutividade com a temperatura, indicando um processotermicamente ativado. Para concentrações elevadas deAl2O3, uma mudança de comportamento para Vogel-Tamman-Fulcher (VTF) foi observado. As variações nacondutividade com a concentração de Al2O3, está associadaa alteração do número dos sítios envolvidos no transportede íons através de interações do tipo ácido-base de Lewisentre partículas de Al2O3 e espécies iônicas...


Asunto(s)
Análisis Espectral , Electrólitos/análisis , Polímeros/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA