Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 256: 153331, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33310529

RESUMEN

Calcineurin B-like protein-interacting protein kinases (CIPKs) are key elements of plant abiotic stress signaling pathways. CIPKs are SOS2 (Salt Overly Sensitive 2)-like proteins (protein kinase S [PKS] proteins) which all contain a putative FISL motif. It seems that the FISL motif is found only in the SOS2 subfamily of protein kinases. In this study, the full-length cDNA of a soybean CIPK gene (GmPKS4) was isolated and was revealed to have an important role in abiotic stress responses. A qRT-PCR analysis indicated that GmPKS4 expression is upregulated under saline conditions or when exposed to alkali, salt-alkali, drought, or abscisic acid (ABA). A subcellular localization assay revealed the presence of GmPKS4 in the nucleus and cytoplasm. Further studies on the GmPKS4 promoter suggested it affects soybean resistance to various stresses. Transgenic Arabidopsis thaliana and soybean hairy roots overexpressing GmPKS4 had increased proline content as well as high antioxidant enzyme activities but decreased malondialdehyde levels following salt and salt-alkali stress treatments. Additionally, GmPKS4 overexpression activated reactive oxygen species scavenging systems, thereby minimizing damages due to oxidative and osmotic stresses. Moreover, upregulated stress-related gene expression levels were detected in lines overexpressing GmPKS4 under stress conditions. In conclusion, GmPKS4 improves soybean tolerance to salt and salt-alkali stresses. The overexpression of GmPKS4 enhances the scavenging of reactive oxygen species, osmolyte synthesis, and the transcriptional regulation of stress-related genes.


Asunto(s)
Álcalis/efectos adversos , Calcineurina/genética , Glycine max/genética , Presión Osmótica/fisiología , Estrés Salino/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Calcineurina/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología , Glycine max/fisiología , Estrés Fisiológico/fisiología
2.
Mol Biol Rep ; 47(5): 3475-3484, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32279210

RESUMEN

Small ubiquitin-like modifier (SUMO) participates in post-translational modification of various target proteins. SUMOylation is an important molecular regulatory mechanism for plants to respond to abiotic stress. In the present study, GmSUMO2 gene was isolated from soybean seedlings for further study because of the highest expression level among these six SUMO genes in soybean. qRT-PCR results showed that GmSUMO2 gene were detected in root, leaf, cotyledon, seed root, flower, pod and seed, with the highest transcription level in cotyledon. Moreover, GmSUMO2 gene was transcriptionally regulated by 200 mM NaCl, 42 °C, 25 µM abscisic acid (ABA) and 20% PEG6000 during the 24 h period of treatment. Besides, western blot analysis using AtSUMO1 antibody indicated that the free SUMO levels and SUMOylation dynamics were regulated by ABA stimulus. Functional analysis indicated that overexpression of GmSUMO2 gene in soybean hairy roots accentuated the sensitivity to exogenous ABA. Furthermore, the expression levels of ABI3, ABI5, SnRK1.1 and SnRK1.2 were differentially regulated by GmSUMO2 in transgenic soybean hairy roots. Overall, these results provided a preliminary understanding of molecular characterization, expression and function of GmSUMO2 in soybean.


Asunto(s)
Ácido Abscísico/metabolismo , Glycine max/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteínas Serina-Treonina Quinasas/genética , Plantones/metabolismo , Semillas/metabolismo , Transducción de Señal/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Glycine max/metabolismo , Estrés Fisiológico/genética
3.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085397

RESUMEN

Following an in-depth transcriptomics-based approach, we first screened out and analyzed (in silico) cis motifs in a group of 63 drought-inducible genes (in soybean). Six novel synthetic promoters (SynP14-SynP19) were designed by concatenating 11 cis motifs, ABF, ABRE, ABRE-Like, CBF, E2F-VARIANT, G-box, GCC-Box, MYB1, MYB4, RAV1-A, and RAV1-B (in multiple copies and various combination) with a minimal 35s core promoter and a 222 bp synthetic intron sequence. In order to validate their drought-inducibility and root-specificity, the designed synthetic assemblies were transformed in soybean hairy roots to drive GUS gene using pCAMBIA3301. Through GUS histochemical assay (after a 72 h 6% PEG6000 treatment), we noticed higher glucuronidase activity in transgenic hairy roots harboring SynP15, SynP16, and SynP18. Further screening through GUS fluorometric assay flaunted SynP16 as the most appropriate combination of efficient drought-responsive cis motifs. Afterwards, we stably transformed SynP15, SynP16, and SynP18 in Arabidopsis and carried out GUS staining as well as fluorometric assays of the transgenic plants treated with simulated drought stress. Consistently, SynP16 retained higher transcriptional activity in Arabidopsis roots in response to drought. Thus the root-specific drought-inducible synthetic promoters designed using stimulus-specific cis motifs in a definite fashion could be exploited in developing drought tolerance in soybean and other crops as well. Moreover, the rationale of design extends our knowledge of trial-and-error based cis engineering to construct synthetic promoters for transcriptional upgradation against other stresses.


Asunto(s)
Sequías , Motivos de Nucleótidos/genética , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Agrobacterium/metabolismo , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/metabolismo , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Glycine max/genética , Transformación Genética , Regulación hacia Arriba/genética
4.
Int J Mol Sci ; 20(19)2019 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-31569565

RESUMEN

Fifteen transcription factors in the CAMTA (calmodulin binding transcription activator) family of soybean were reported to differentially regulate in multiple stresses; however, their functional analyses had not yet been attempted. To characterize their role in stresses, we first comprehensively analyzed the GmCAMTA family in silico and thereafter determined their expression pattern under drought. The bioinformatics analysis revealed multiple stress-related cis-regulatory elements including ABRE, SARE, G-box and W-box, 10 unique miRNA (microRNA) targets in GmCAMTA transcripts and 48 proteins in GmCAMTAs' interaction network. We then cloned the 2769 bp CDS (coding sequence) of GmCAMTA12 in an expression vector and overexpressed in soybean and Arabidopsis through Agrobacterium-mediated transformation. The T3 (Transgenic generation 3) stably transformed homozygous lines of Arabidopsis exhibited enhanced tolerance to drought in soil as well as on MS (Murashige and Skoog) media containing mannitol. In their drought assay, the average survival rate of transgenic Arabidopsis lines OE5 and OE12 (Overexpression Line 5 and Line 12) was 83.66% and 87.87%, respectively, which was ~30% higher than that of wild type. In addition, the germination and root length assays as well as physiological indexes such as proline and malondialdehyde contents, catalase activity and leakage of electrolytes affirmed the better performance of OE lines. Similarly, GmCAMTA12 overexpression in soybean promoted drought-efficient hairy roots in OE chimeric plants as compare to that of VC (Vector control). In parallel, the improved growth performance of OE in Hoagland-PEG (polyethylene glycol) and on MS-mannitol was revealed by their phenotypic, physiological and molecular measures. Furthermore, with the overexpression of GmCAMTA12, the downstream genes including AtAnnexin5, AtCaMHSP, At2G433110 and AtWRKY14 were upregulated in Arabidopsis. Likewise, in soybean hairy roots, GmELO, GmNAB and GmPLA1-IId were significantly upregulated as a result of GmCAMTA12 overexpression and majority of these upregulated genes in both plants possess CAMTA binding CGCG/CGTG motif in their promoters. Taken together, we report that GmCAMTA12 plays substantial role in tolerance of soybean against drought stress and could prove to be a novel candidate for engineering soybean and other plants against drought stress. Some research gaps were also identified for future studies to extend our comprehension of Ca-CaM-CAMTA-mediated stress regulatory mechanisms.


Asunto(s)
Adaptación Biológica/genética , Arabidopsis/fisiología , Proteínas de Unión al Calcio/genética , Sequías , Expresión Génica , Glycine max/fisiología , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Fenómenos Químicos , Filogenia , Glycine max/clasificación
5.
BMC Plant Biol ; 19(1): 598, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888478

RESUMEN

BACKGROUND: The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. RESULTS: In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. CONCLUSIONS: Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Resistencia a la Enfermedad/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Glycine max/metabolismo , Glycine max/microbiología , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
Front Plant Sci ; 8: 1232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769947

RESUMEN

The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the shoots was simultaneously promoted. PgTIP1 transformation into soybean plants enhanced the expression of some stress-related genes (GmPOD, GmAPX1, GmSOS1, and GmCLC1) in the roots and leaves under salt treatment. This indicates that the causes of enhanced salt tolerance of heterologous PgTIP1-transformed soybean are associated with the positive regulation on water relations, ion homeostasis, and ROS scavenging under salt stress both at root-specific and whole plant levels.

7.
Gene ; 621: 32-39, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28411083

RESUMEN

MicroRNAs (miRNAs) are universal regulators that repress target gene expression in eukaryotes and play essential roles in plant immune responses. miRNAs were recently found to be involved in soybean and Phytophthora sojae interactions. Here, we screened miR1510, which was repressed in soybean during infection with P. sojae, indicating that it might be involved in soybean response to pathogens. To further uncover the roles of miRNAs in soybean, gma-miR1510a/b was overexpressed in the hairy roots of soybean using an Arabidopsis miR319a precursor as the backbone. The gma-miR1510a/b-overexpressing hairy roots showed enhanced susceptibility to P. sojae, and the results showed that miR1510 guides the cleavage of the Glyma.16G135500 gene, which encodes a classic type of plant disease resistance-associated gene that harbors the Toll-interleukin-like receptor (TIR) domain and nucleotide-binding site-leucine-rich repeat (NB-LRR) domain. Noticeably, several biotic stresses and hormone-responsive cis-regulatory elements were found to be present in the promoters of gma-MIR1510a and the target gene. Collectively, the results obtained in the current study reveal that gma-miR1510 regulates the target NB-LRR immune receptor gene Glyma.16G135500 and thus plays a crucial role in regulating the resistance of soybean to P. sojae.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , MicroARNs/genética , Phytophthora/patogenicidad , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Glycine max/inmunología , Glycine max/microbiología
8.
Plant J ; 90(3): 535-546, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28207970

RESUMEN

C-glycosyltransferases (CGTs) are important enzymes that are responsible for the synthesis of the C-glycosides of flavonoids and isoflavonoids. Flavonoid CGTs have been molecularly characterized from several plant species; however, to date, no gene encoding an isoflavonoid CGT has been reported from any plant species. A significant example of an isoflavonoid C-glycoside is puerarin, a compound that contributes to the major medicinal effects of Pueraria lobata. Little is known about the C-glucosylation that occurs during puerarin biosynthesis. One possible route for puerarin synthesis is via the C-glucosylation of daidzein. This study describes the molecular cloning and functional characterization of a novel glucosyltransferase (PlUGT43) from P. lobata. Biochemical analyses revealed that PlUGT43 possesses an activity for the C-glucosylation of daidzein to puerarin; it shows activity with the isoflavones daidzein and genistein, but displays no activity towards other potential acceptors, including flavonoids. To validate the in vivo function of PlUGT43, the PlUGT43 gene was over-expressed in soybean hairy roots that naturally synthesize daidzein but that do not produce puerarin. The expression of PlUGT43 led to the production of puerarin in the transgenic soybean hairy roots, confirming a role for PlUGT43 in puerarin biosynthesis.


Asunto(s)
Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Pueraria/metabolismo , Glicosiltransferasas/genética , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Pueraria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA