Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Genome Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358016

RESUMEN

DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assembly, and functional analysis for DNA modifications.

2.
Mol Ther Nucleic Acids ; 35(3): 102311, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281698

RESUMEN

RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing trans-splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced. While correcting mutations by trans-splicing has been previously demonstrated, prior attempts were hampered by low efficiency or lack of translation in preclinical models. Advances in synthetic biology, next-generation sequencing, and bioinformatics, with a deeper understanding of mechanisms controlling RNA splicing, have triggered a re-emergence of trans-splicing and the development of new RNA exon editing molecules for treating human disease, including the first application in a clinical trial (this study was registered at ClinicalTrials.gov [NCT06467344]). Here, we provide an overview of RNA splicing, the history of trans-splicing, previously reported therapeutic applications, and how modern advances are enabling the discovery of RNA exon editing molecules for genetic targets unable to be addressed by conventional gene therapy and gene editing approaches.

3.
J Prev Interv Community ; : 1-7, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324524

RESUMEN

In this Special Issue of the Journal of Prevention and Intervention in the Community, Building a Future for Education Equity Interventions, we acknowledge how research more often privileges those who write about it versus those who participate in it. The researchers in this special issue identify as women, people from diverse racial and ethnic backgrounds, and international scholars. This special issue shares the work of several authors who provide conceptual and empirical findings demonstrating ways to protect young people's dignity and those communities marginalized by race, ethnicity, gender, and ability.

4.
Mol Ther Nucleic Acids ; 35(4): 102315, 2024 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-39296330

RESUMEN

In recent years, the field of epitranscriptomics has witnessed significant breakthroughs with the identification of more than 150 different chemical modifications in different RNA species. It has become increasingly clear that these chemical modifications play an important role in the regulation of fundamental processes linked to cell fate and development. Further interest was sparked by the ability of the epitranscriptome to regulate pathogenesis. However, despite the involvement of macrophages in a multitude of diseases, a clear knowledge gap exists in the understanding of how RNA modifications regulate the phenotype of these cells. Here, we provide a comprehensive overview of the known roles of macrophage RNA modifications in the context of different diseases.

5.
Mol Ther Oncol ; 32(3): 200854, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39224504

RESUMEN

Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.

6.
Mol Ther Nucleic Acids ; 35(3): 102281, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39188306

RESUMEN

Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.

7.
Mol Ther Nucleic Acids ; 35(3): 102284, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39165563

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are enzymes that catalyze the hydrolytic deamination of adenosine to inosine. The editing feature of ADARs has garnered much attention as a therapeutic tool to repurpose ADARs to correct disease-causing mutations at the mRNA level in a technique called site-directed RNA editing (SDRE). Administering a short guide RNA oligonucleotide that hybridizes to a mutant sequence forms the requisite dsRNA substrate, directing ADARs to edit the desired adenosine. However, much is still unknown about ADARs' selectivity and sequence-specific effects on editing. Atomic-resolution structures can help provide additional insight to ADARs' selectivity and lead to novel guide RNA designs. Indeed, recent structures of ADAR domains have expanded our understanding on RNA binding and the base-flipping catalytic mechanism. These efforts have enabled the rational design of improved ADAR guide strands and advanced the therapeutic potential of the SDRE approach. While no full-length structure of any ADAR is known, this review presents an exposition of the structural basis for function of the different ADAR domains, focusing on human ADAR2. Key insights are extrapolated to human ADAR1, which is of substantial interest because of its widespread expression in most human tissues.

8.
Acta Trop ; 258: 107351, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103112

RESUMEN

This is the introductory paper to the special issue "Merging ecology and control of vectors as a strategy to reduce zoonotic risks: an introduction to the Special Issue".


Asunto(s)
Vectores de Enfermedades , Zoonosis , Animales , Zoonosis/transmisión , Zoonosis/prevención & control , Zoonosis/epidemiología , Humanos , Ecología
9.
J Neurochem ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991093

RESUMEN

This preface introduces the Journal of Neurochemistry Special Issue on pain research. While acute pain provides important sensory information, which aids in the protection of an organism, it can in some cases transition into a chronic state. Unfortunately, chronic pain is a highly disabling state characterised by intense and abnormal pain sensations, which are exacerbated by problematic psychosocial disturbances that are poorly treated by current drugs. This issue includes several reviews that address current issues spanning basic to clinical research on a range of pain syndromes. Also included is a collection of basic research articles investigating important aspects of pain signalling through to whole body aspects of pain integration.

10.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39026828

RESUMEN

Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA promises the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N6-methyladenosine (m6A) modifications in native mRNA. We utilized human and mouse cells with known genetic variants to assign allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses revealed the importance of sequences adjacent to the DRACH-motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discovered allele-specific m6A modification (ASM) events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long reads and surpassing the capabilities of antibody-based short-read approaches. This technological advancement promises to advance our understanding of the role of genetics in determining mRNA modifications.

11.
Mol Ther Nucleic Acids ; 35(2): 102200, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38831898

RESUMEN

Cancer-induced bone pain (CIBP) significantly impacts the quality of life and survival of patients with advanced cancer. Despite the established role of neurexins in synaptic structure and function, their involvement in sensory processing during injury has not been extensively studied. In this study using a rat model of CIBP, we observed increased neurexin 2 expression in spinal cord neurons. Knockdown of neurexin 2 in the spinal cord reversed CIBP-related behaviors, sensitization of spinal c-Fos neurons, and pain-related negative emotional behaviors. Additionally, increased acetylation of neurexin 2 mRNA was identified in the spinal dorsal horn of CIBP rats. Decreasing the expression of N-acetyltransferase 10 (NAT10) reduced neurexin 2 mRNA acetylation and neurexin 2 expression. In PC12 cells, we confirmed that neurexin 2 mRNA acetylation enhanced its stability, and neurexin 2 expression was regulated by NAT10. Finally, we discovered that the NAT10/ac4C-neurexin 2 axis modulated neuronal synaptogenesis. This study demonstrated that the NAT10/ac4C-mediated posttranscriptional modulation of neurexin 2 expression led to the remodeling of spinal synapses and the development of conscious hypersensitivity in CIBP rats. Therefore, targeting the epigenetic modification of neurexin 2 mRNA ac4C may offer a new therapeutic approach for the treatment of nociceptive hypersensitivity in CIBP.

12.
Mol Ther Oncol ; 32(1): 200773, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596295

RESUMEN

Immune checkpoint inhibitors (ICIs) have shown great promise as immunotherapy for restoring T cell function and reactivating anti-tumor immunity. The US Food and Drug Administration (FDA) approved the first immune checkpoint inhibitor, ipilimumab, in 2011 for advanced melanoma patients, leading to significant improvements in survival rates. Subsequently, other immune checkpoint-targeting antibodies were tested. Currently, seven ICIs, namely ipilimumab (anti-cytotoxic T lymphocyte-associated protein 4 [CTLA4]), pembrolizumab, nivolumab (anti-programmed cell death protein 1 [PD-1]), atezolizumab, avelumab, durvalumab, and cemiplimab (anti-PD-L1), have been approved for various cancer types. However, the efficacy of antibodies targeting CTLA4 or PD-1/programmed death-ligand 1 (PD-L1) remains suboptimal. Consequently, ongoing studies are evaluating the next generation of ICIs, such as lymphocyte activation gene-3 (LAG3), T cell immunoglobulin and mucin-domain containing 3 (TIM3), and T cell immunoglobulin and ITIM domain (TIGIT). Our review provides a summary of clinical trials evaluating these novel immune checkpoints in cancer treatment.

13.
Mol Ther Nucleic Acids ; 35(2): 102173, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617973

RESUMEN

Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.

14.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559226

RESUMEN

Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing. Biosurfer's detailed tracking of nucleotide-to-residue relationships helped reveal an uncommonly tracked source of single amino acid residue changes arising from the codon splits at junctions. For 17% of internal sequence changes, such split codon patterns lead to single residue differences, termed "ragged codons". Of variable C-termini, 72% involve splice- or intron retention-induced reading frameshifts. We found an unusual pattern of reading frame changes, in which the first frameshift is closely followed by a distinct second frameshift that restores the original frame, which we term a "snapback" frameshift. We analyzed long read RNA-seq-predicted proteome of a human cell line and found similar trends as compared to our GENCODE analysis, with the exception of a higher proportion of isoforms predicted to undergo nonsense-mediated decay. Biosurfer's comprehensive characterization of long-read RNA-seq datasets should accelerate insights of the functional role of protein isoforms, providing mechanistic explanation of the origins of the proteomic diversity driven by the alternative splicing. Biosurfer is available as a Python package at https://github.com/sheynkman-lab/biosurfer.

15.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562692

RESUMEN

Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaption, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitated adaptation, we completed chromosome-level de novo assemblies of all 16 pairs chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380 (IFO11022), using Nanopore MinION long-read sequencing. Characterization of S. bayanus subgenomes and comparative analysis with the genomes of its parent species, S. uvarum and S. eubayanus, provide several new insights into understanding genome evolution after a relatively recent hybridization. For instance, multiple recombination events between the two subgenomes have been observed in each chromosome, followed by loss of heterozygosity (LOH) in most chromosomes in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of S. cerevisiae, such as those involved in the maltose metabolism. In addition, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus. The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaption to maltose brewing environments and mitigated the maladaptive effect of hybridization.

16.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585854

RESUMEN

Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.

17.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38529488

RESUMEN

The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely-studied genomes: human HG002, Solanum lycopersicum Heinz 1706 (tomato), and Zea mays B73 (maize). For the diploid, heterozygous HG002 genome, we also used "Pore-C" chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the ultra-long reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for de novo genome assembly, and has the potential to provide a single-instrument solution for the reconstruction of complete genomes.

18.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464271

RESUMEN

Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.

19.
Mol Ther Nucleic Acids ; 35(1): 102118, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38314095

RESUMEN

Elucidating the pathobiological mechanisms underlying post-acute pulmonary sequelae following SARS-CoV-2 infection is essential for early interventions and patient stratification. Here, we investigated the potential of microRNAs (miRNAs) as theranostic agents for pulmoprotection in critical illness survivors. Multicenter study including 172 ICU survivors. Diffusion impairment was defined as a lung-diffusing capacity for carbon monoxide (DLCO) <80% within 12 months postdischarge. A disease-associated 16-miRNA panel was quantified in plasma samples collected at ICU admission. Bioinformatic analyses were conducted using KEGG, Reactome, GTEx, and Drug-Gene Interaction databases. The results were validated using an external RNA-seq dataset. A 3-miRNA signature linked to diffusion impairment (miR-27a-3p, miR-93-5p, and miR-199a-5p) was identified using random forest. Levels of miR-93-5p and miR-199a-5p were independently associated with the outcome, improving patient classification provided by the electronic health record. The experimentally validated targets of these miRNAs exhibited enrichment across diverse pathways, with telomere length quantification in an additional set of samples (n = 83) supporting the role of cell senescence in sequelae. Analysis of an external dataset refined the pathobiological fingerprint of pulmonary sequelae. Gene-drug interaction analysis revealed four FDA-approved drugs. Overall, this study advances our understanding of lung recovery in postacute respiratory infections, highlighting the potential of miRNAs and their targets for pulmoprotection.

20.
Mol Ther Nucleic Acids ; 35(1): 102128, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38356865

RESUMEN

Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA