Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Ultrasonics ; 144: 107450, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39222597

RESUMEN

Medical Speed-of-sound (SoS) imaging, which can characterize medical tissue properties better by quantifying their different SoS, is an effective imaging method compared with conventional B-mode ultrasound imaging. As a commonly used diagnostic instrument, a hand-held array probe features convenient and quick inspection. However, artifacts will occur in the single-angle SoS imaging, resulting in indistinguishable tissue boundaries. In order to build a high-quality SoS image, a number of raw data are needed, which will bring difficulties to data storage and processing. Compressed sensing (CS) theory offers theoretical support to the feasibility that a sparse signal can be rebuilt with random but less sampling data. In this study, we proposed an SoS reconstruction method based on CS theory to process signals obtained from a hand-held linear array probe with a passive reflector positioned on the opposite side. The SoS reconstruction method consists of three parts. Firstly, a sparse transform basis is selected appropriately for a sparse representation of the original signal. Then, considering the mathematical principles of SoS imaging, the ray-length matrix is used as a sparse measurement matrix to observe the original signal, which represents the length of the acoustic propagation path. Finally, the orthogonal matching pursuit algorithm is introduced for image reconstruction. The experimental result of the phantom proves that SoS imaging can clearly distinguish tissues that show similar echogenicity in B-mode ultrasound imaging. The simulation and experimental results show that our proposed method holds promising potential for reconstructing precision SoS images with fewer signal samplings, transmission, and storage.


Asunto(s)
Algoritmos , Fantasmas de Imagen , Ultrasonografía , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Humanos
2.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275062

RESUMEN

Hydrophilic and hydrophobic phenomena occur in aqueous solutions. Despite the complex nature of the molecular interactions, the propensity of molecules and ions to hydration is sometimes characterized by a single "hydration number". Passynski's method for determining the hydration numbers in dilute aqueous solutions belongs to the group of methods based on the analysis of the isentropic compressibility of a mixture. Isentropic compressibility is a thermodynamic material constant; thus, the paper deals with Passynski's approach discussed in terms of thermodynamics. First, Passynski's assumptions were applied to the volume of the mixture. Subsequent strict thermodynamic derivation led to a formula for the hydration number which resembled that of Onori rather than the original one. Passynski's number turned out to be inconsistent with the thermodynamics and mechanics of fluids. This is a rather purely empirical measure of the slope of the dependence of isentropic compressibility on the solute mole fraction in a dilute aqueous solution. Being the quotient of the slope and the isentropic compressibility of pure water, Pasynski's numbers are more convenient to analyze and discuss than the slopes themselves. Conclusions about molecular interactions based on these numbers must be treated with considerable caution.

3.
IEEE Access ; 12: 106707-106719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148928

RESUMEN

Despite advances in neonatal care, metabolic bone disease of prematurity (MBDP) remains a common problem in preterm infants. The development of non-invasive and affordable diagnostic approaches can be highly beneficial in the diagnosis and management of preterm infants at risk of MBDP. In this study, we present an ultrasound method called pulsed vibro-acoustic analysis to investigate the progression of bone mineralization in infants over time versus weight and postmenstrual age. The proposed pulsed vibro-acoustic analysis method is used to evaluate the vibrational characteristics of the bone. This method uses the acoustic radiation force of ultrasound to vibrate the bone. The generated acoustic waves are detected using a hydrophone placed on the skin over the tibia. The frequency of vibration and the speeds of received acoustic waves have information regarding the material property of the bone. We examined the feasibility of this method through an in vivo study consisting of 25 preterm and 10 full term infants. The pulsed vibro-acoustic data were acquired longitudinally in preterm infants with multiple visits and at a single visit in full term infants. Speed of sound and mean peak frequency of slow and fast sound waves recorded by hydrophone were used to analyze bone mineralization progress. Linear mixed model was used for statistical analysis in characterizing the mineralization progress in preterm infants compared to data from full term subjects. Significance changes in wave parameters (speed of sound and mean peak frequency) with respect to the postmenstrual age and weight in preterm infants were observed with p-values less than 0.05. Statistical significances in speed of sound measurement for both fast and slow waves were observed between preterm and full term infants, with p-values of <0.01 and 0.02, respectively. The results of this pilot study indicate the potential use of vibro-acoustic analysis for monitoring the progression of bone mineralization in preterm infants.

4.
Healthcare (Basel) ; 12(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998789

RESUMEN

The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.

5.
Rep Prog Phys ; 87(7)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899361

RESUMEN

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

6.
J Ultrasound Med ; 43(9): 1711-1722, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38873702

RESUMEN

OBJECTIVES: To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. METHODS: This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C-means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. RESULTS: The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value <.001), body length (ρ = 0.583, P value <.001), and gestational age (ρ = 0.557, P value <.001). CONCLUSION: These findings suggest that fuzzy C-means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.


Asunto(s)
Tibia , Ultrasonografía , Aprendizaje Automático no Supervisado , Humanos , Recién Nacido , Ultrasonografía/métodos , Femenino , Masculino , Tibia/diagnóstico por imagen , Tibia/fisiología , Fantasmas de Imagen , Algoritmos , Reproducibilidad de los Resultados
7.
Sensors (Basel) ; 24(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793981

RESUMEN

Acoustic tomography utilizes sensor arrays to collect sound wave signals, enabling non-contact measurement of physical parameters within an area of interest. Compared to optical technologies, acoustic tomography offers the advantages of low cost, low maintenance, and easy installation. Current research in acoustic tomography mainly focuses on reconstruction algorithms for temperature fields, while monitoring the composition and concentration of gases is significant for ensuring safety and improving efficiency, such as in scenarios like boiler furnaces and aviation engine nozzles. In excitable gases, the speed of sound exhibits an S-shaped curve that changes with frequency, a characteristic that could be potentially useful for acoustic tomography. Therefore, this study primarily discusses the quantitative calculation of gas concentration and temperature based on the dispersion of the speed of sound. By employing graphic processing and pattern matching methods, a coupled relationship of the dispersion of the speed of sound with gas concentration and temperature is established. The projection intersection method is used to calculate the concentration and temperature of binary and ternary gas mixtures. Combined with the inversion method, a joint reconstruction method for gas concentration fields and temperature fields based on the dispersion of the speed of sound is developed. The feasibility of the proposed simultaneous reconstruction method for temperature and concentration fields is validated using numerical simulations. Additionally, an acoustic tomography experimental system was set up to conduct reconstruction experiments for binary gas concentration fields and temperature fields, confirming the effectiveness of the proposed method.

8.
Ultrason Imaging ; 46(3): 186-196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647142

RESUMEN

Conventional B-mode ultrasound imaging has difficulty in delineating homogeneous soft tissues with similar acoustic impedances, as the reflectivity depends on the acoustic impedance at the interface. As a quantitative imaging biomarker sensitive to alteration of biomechanical properties, speed-of-sound (SoS) holds promising potential for tissue and disease differentiation such as delineation of different breast tissue types with similar acoustic impedance. Compared to two-dimensional (2D) SoS images, three-dimensional (3D) volumetric SoS images achieved through a full-angle ultrasound scan can reveal more intricate morphological structures of tissues; however, they generally require a ring transducer. In this study, we introduce a 3D SoS reconstruction system that utilizes hand-held linear arrays instead. This system employs a passive reflector positioned opposite the linear arrays, serving as an echogenic reference for time-of-flight (ToF) measurements, and a high-definition camera to track the location corresponding to each group of transmit-receive data. To merge these two streams of ToF measurements and location tracking, a voxel-based reconstruction algorithm is implemented. Experimental results with gelatin phantom and ex vivo tissue have demonstrated the stability of our proposed method. Moreover, the results underscore the potential of this system as a complementary diagnostic modality, particularly in the context of diseases such as breast cancer.


Asunto(s)
Imagenología Tridimensional , Fantasmas de Imagen , Ultrasonografía , Ultrasonografía/métodos , Imagenología Tridimensional/métodos , Animales , Algoritmos , Transductores , Diseño de Equipo , Humanos , Femenino
9.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675666

RESUMEN

In this study, a series of four surface-active compounds-N-alkyl betaine ethyl ester chlorides, CnBetC2Cl-were synthesized and characterized in aqueous solutions. As with other alkyl betaines, these amphiphiles can be practically used, for example, as co-surfactants and/or solubility enhancers acting according to hydrotropic or micellar mechanisms, depending on the alkyl chain length in the amine. We focused on the representatives of the medium alkyl chain length (C6-C12) to find the dependence between the alkyl chain length in N-alkyl betaine ethyl ester chlorides and the surface, volumetric, acoustic, and viscometric properties of their solutions. Ethyl esters, the derivatives of amino acids, were chosen to increase functionality and take advantage of possible hydrolysis in solutions at higher pH, which is also a key parameter in biodegradability. The micellization parameters were calculated based on the physicochemical characteristics. We focused our interest on the ester with a dodecyl substituent since we can compare and discuss its properties with some other C12 representatives that are available in literature. Surprisingly, its micellization characteristic is almost temperature-independent in the investigated temperature range, t = (15-45) °C. Particularly interesting are the results of dynamic light scattering (DLS), which show that the changes in physicochemical parameters of the C12 homolog around the CMC are caused by the two types of micelles of different sizes present in solutions.

10.
Photoacoustics ; 37: 100597, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38425677

RESUMEN

Real-time applications in three-dimensional photoacoustic tomography from planar sensors rely on fast reconstruction algorithms that assume the speed of sound (SoS) in the tissue is homogeneous. Moreover, the reconstruction quality depends on the correct choice for the constant SoS. In this study, we discuss the possibility of ameliorating the problem of unknown or heterogeneous SoS distributions by using learned reconstruction methods. This can be done by modelling the uncertainties in the training data. In addition, a correction term can be included in the learned reconstruction method. We investigate the influence of both and while a learned correction component can improve reconstruction quality further, we show that a careful choice of uncertainties in the training data is the primary factor to overcome unknown SoS. We support our findings with simulated and in vivo measurements in 3D.

11.
Photoacoustics ; 37: 100599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38495950

RESUMEN

Introduction: In this study, we utilized the pulsed photoacoustic (PA) technique to analyze globular sedimentation in whole human blood, with a focus on distinguishing between healthy individuals and those with hemolytic anemia. Methods: Blood samples were collected from both healthy individuals (women and men) and those with hemolytic anemia, and temporal and spectral parameters of PA signals were employed for analysis. Results: Significant differences (p < 0.05) were observed in PA metrics between the two groups. The proposed spectral analysis allowed significant differentiation within a 25-minute measurement window. Anemic blood samples exhibited higher erythrocyte sedimentation rate (ESR) values, indicating increased erythrocyte aggregation. Discussion: This study underscores the potential of PA signal analysis in ESR assessment as an efficient method for distinguishing between healthy and anemic blood, surpassing traditional approaches. It represents a promising contribution to the development of precise and sensitive techniques for analyzing human blood samples in clinical settings.

12.
Biomed Eng Lett ; 14(1): 57-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186951

RESUMEN

Ultrasound computed tomography (USCT) is an emerging technology that offers a noninvasive and radiation-free imaging approach with high sensitivity, making it promising for the early detection and diagnosis of breast cancer. The speed-of-sound (SOS) parameter plays a crucial role in distinguishing between benign masses and breast cancer. However, traditional SOS reconstruction methods face challenges in achieving a balance between resolution and computational efficiency, which hinders their clinical applications due to high computational complexity and long reconstruction times. In this paper, we propose a novel and efficient approach for direct SOS image reconstruction based on an improved conditional generative adversarial network. The generator directly reconstructs SOS images from time-of-flight information, eliminating the need for intermediate steps. Residual spatial-channel attention blocks are integrated into the generator to adaptively determine the relevance of arrival time from the transducer pair corresponding to each pixel in the SOS image. An ablation study verified the effectiveness of this module. Qualitative and quantitative evaluation results on breast phantom datasets demonstrate that this method is capable of rapidly reconstructing high-quality SOS images, achieving better generation results and image quality. Therefore, we believe that the proposed algorithm represents a new direction in the research area of USCT SOS reconstruction.

13.
J Med Ultrason (2001) ; 51(1): 49-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032505

RESUMEN

PURPOSE: Estimating the speed of sound (SoS) in ultrasound propagation media is important for improving the quality of B-mode images and for quantitative tissue characterization. We have been studying a method for estimating the SoS by measuring the reception time distribution of waves scattered from a scatterer at the elements in a probe. Previously, the measurement cross section was assumed to be perpendicular to the long axis of the blood vessel. In this study, we experimentally investigated the relationship between rotation angle [Formula: see text] of the probe relative to the short-axis plane of the blood vessel and the estimated SoS, [Formula: see text]. METHODS: Water tank and phantom experiments were conducted to investigate the characteristics of [Formula: see text] and element signals when the probe was rotated. RESULTS: The received signal powers at the elements around both edges greatly decreased as [Formula: see text] increased. We introduced a parameter representing the decrease in power, [Formula: see text], in the received signal at the elements at both edges relative to the center element. [Formula: see text] was estimated to be larger as [Formula: see text] increased, especially for [Formula: see text]. [Formula: see text] also increased as [Formula: see text] increased. An approximately proportional relationship existed between the errors in [Formula: see text] and [Formula: see text]. CONCLUSION: Based on these results, we can distinguish between the presence and the absence of SoS misestimations using the difference in power among the elements in the received signal. In the absence of misestimation, we can obtain the true SoS, even if the target has a non-negligible size, by applying our previously proposed methods.


Asunto(s)
Rotación , Humanos , Fantasmas de Imagen
14.
J Med Ultrason (2001) ; 51(1): 17-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947986

RESUMEN

PURPOSE: In the receive beamforming of an ultrasonography system, a B-mode image is reconstructed by assuming an average speed of sound (SoS) as a constant value. In our previous studies, we proposed a method for estimating the average SoS based on the coherence factor (CF) and the reciprocal of phase variances of element signals in delay-and-sum (DAS) beamforming. In this paper, we investigate the accuracy of estimation of the average SoS for compound imaging. METHODS: For this purpose, two numerical simulations were performed with k-Wave software. Also, the estimation methods based on the CF and the reciprocal were applied to in vivo data from the common carotid artery, and B-mode images were reconstructed using the estimated average SoS. RESULTS: In the first numerical simulation using an inhomogeneous phantom, the relationship between the accuracy and the transmission angles for the estimation was investigated, and the root mean squared errors (RMSEs) of estimates obtained based on the CF and the reciprocal of the phase variance were 1.25 ± 0.09, and 0.765 ± 0.17% at the transmission sequence of steering angles of (- 10°, - 5°, 0°, 5°, 10°), respectively. In the second numerical simulation using a cyst phantom, lateral resolutions were improved by reconstructing the image using the estimates obtained using the proposed strategy (reciprocal). By the proposed strategy, improvement of the continuity of the lumen-intima interface in the lateral direction was observed in the in vivo experiment. CONCLUSION: Consequently, the results indicated that the proposed strategy was beneficial for estimation of the average SoS and image reconstruction.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Humanos , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sonido , Fantasmas de Imagen
15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 737-742, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37927014

RESUMEN

Objective To compare the consistency of quantitative ultrasound(QUS)and dual-energy X-ray absorptiometry(DXA)in measuring bone mineral density(BMD)of adults aged 18-40 years in Guangzhou and evaluate the diagnostic value of QUS for identifying low bone mass.Methods DXA was employed to measure the BMD and QUS to measure the speed of sound(SOS)in 731 participants.The Bland-Altman analysis was performed to evaluate the consistency of Z scores between SOS and BMD.With the BMD Z ≤-2.00 as the diagnostic criterion for low bone mass,the receiver operating characteristics curve of QUS was established,and the area under the curve(AUC)and the sensitivity,specificity,and correct diagnostic index for the optimal cut-off of SOS Z score were calculated.Results The results of Bland-Altman analysis showed that the mean differences in the Z scores of SOS and BMD in males and females were 1.27(-0.94 to 3.47)and 0.93(-1.33 to 3.18),respectively.The AUC of SOS Z score in the diagnosis of low bone mass in males and females was 0.734(95%CI=0.380-0.788)and 0.679(95%CI=0.625-0.732),respectively.In males,the optimal cut-off of SOS Z score for low bone mass was -0.35,with the sensitivity,specificity,and correct diagnostic index of 64.1%,68.6%,and 0.327,respectively.In females,the optimal cut-off value of SOS Z scores for low bone mass was -1.14,with the sensitivity,specificity,and correct index of 73.9%,54.8%,and 0.285,respectively.Conclusion QUS and DXA show poor consistency in the diagnosis of BMD in the adults aged 18-40 years in Guangzhou,while QUS demonstrates an acceptable value in identifying low bone mass.


Asunto(s)
Densidad Ósea , Huesos , Masculino , Femenino , Adulto , Humanos , Absorciometría de Fotón/métodos , Ultrasonografía , Curva ROC , Sensibilidad y Especificidad
16.
Phys Med Biol ; 68(21)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37774710

RESUMEN

Objective. Develop a dense algorithm for calculating the speed-of-sound shift between consecutive acoustic acquisitions as a noninvasive means to evaluating temperature change during thermal ablation.Methods. An algorithm for dense speed-of-sound shift imaging (DSI) was developed to simultaneously incorporate information from the entire field of view using a combination of dense optical flow and inverse problem regularization, thus speeding up the calculation and introducing spatial agreement between pixels natively. Thermal ablation monitoring consisted of two main steps: pixel shift tracking using Farneback optical flow, and mathematical modeling of the relationship between the pixel displacement and temperature change as an inverse problem to find the speed-of-sound shift. A calibration constant translates from speed-of-sound shift to temperature change. The method performance was tested inex vivosamples and compared to standard thermal strain imaging (TSI) methods.Main results. Thermal ablation at a frequency of 2 MHz was applied to an agarose phantom that created a speed-of-sound shift measured by an L12-5 imaging transducer. A focal spot was reconstructed by solving the inverse problem. Next, a thermocouple measured the temperature rise during thermal ablation ofex vivochicken breast to calibrate the setup. Temperature changes between 3 °C and 15 °C was measured with high thermometry precision of less than 2 °C error for temperature changes as low as 8 °C. The DSI method outperformed standard TSI in both spatial coherence and runtime in high-intensity focused ultrasound-induced hyperthermia.Significance. Dense ultrasonic speed-of-sound shift imaging can successfully monitor the speed-of-sound shift introduced by thermal ablation. This technique is faster and more robust than current methods, and therefore can be used as a noninvasive, real time and cost-effective thermometry method, with high clinical applicability.


Asunto(s)
Hipertermia Inducida , Termometría , Ultrasonido , Termometría/métodos , Temperatura , Hipertermia Inducida/métodos , Temperatura Corporal , Fantasmas de Imagen , Imagen por Resonancia Magnética
17.
Ultrasound Med Biol ; 49(12): 2489-2496, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716831

RESUMEN

OBJECTIVE: The ultrasonic properties of scalp may be relevant to a variety of applications including transcranial ultrasound. However, there is no information about the ultrasonic properties of scalp available in the literature. While ultrasonic studies of skin from other anatomic regions have been previously reported, scalp tissue is generally thicker with a higher density of hair follicles, blood vessels and sebaceous glands. Thus, it is unknown if the ultrasonic properties of scalp are similar to skin from other regions. The goal of this study was to measure the ultrasonic properties of human scalp. METHODS: Pulse-echo measurements were performed with a 7.5 MHz ultrasound transducer to determine the speed of sound (SOS), frequency slope of attenuation (FSA) and integrated backscatter coefficient (IBC) of 32 specimens of formalin-fixed human scalp from four donors. RESULTS: The means ± standard deviations for these three ultrasonic quantities measured in the frequency range 2.83-7.74 MHz over all specimens were SOS = 1525 ± 16.92 m/s, FSA = 2.59 ± 0.724 dB/cm/MHz and IBC = 0.122 ± 0.0746 cm-1 Sr-1. CONCLUSION: These values are comparable to reported values for human skin from other parts of the body, but some differences in SOS and IBC exist.


Asunto(s)
Cuero Cabelludo , Ultrasonido , Humanos , Ultrasonografía , Sonido , Fantasmas de Imagen
18.
Plants (Basel) ; 12(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631102

RESUMEN

Polyphenols from Slovenian hops (Humulus lupulus L.) of the Aurora variety were extracted by different methods and using classical solvents and several deep eutectic solvents (DES) based on choline chloride as the hydrogen bond acceptor component. The obtained extract solutions were analyzed by HPLC for the content of extracted α- and ß-acids and extracted xanthohumol. It was found that choline chloride:phenol DES concentrated aqueous solution had an extraction efficiency close to that of diethyl ether, which is considered one of the best classical extraction solvents for polyphenols from hops. The comparison of the extraction efficiency with other choline chloride-based DESs showed that the chemical similarity of the phenol ring in the solvent DES with the polyphenols in hops may be crucial for a highly efficient extraction with choline chloride:phenol DES. On the other hand, the choice of extraction method and the viscosity of the solvents tested seem to play only a minor role in this respect. As far as we know, this is the first study to attempt to relate extraction efficiency in the extraction of hydrophobic solutes to the compressibility of the DES extractants, the latter of which may be correlated with the extent of hydrophobic hydration around the DES components. In addition, using the heating and stirring method for the preparation of choline chloride-based DES concentrated aqueous solutions we found no support for the occurrence of water in two different roles (in the structural and in the dilution role) in these solvents.

19.
Theranostics ; 13(12): 4217-4228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554280

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Lípidos
20.
Adv Exp Med Biol ; 1403: 239-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495921

RESUMEN

The clinical applications of the volography algorithm and concomitant refraction-corrected reflection algorithm as described in Chap. 10 are discussed here. Comparisons with an H&E stained image, discussion of glandular tissue visibility, related biomarkers, segmentation accuracy and capabilities, microcalcification and cyst detection and analysis, and various VGA and clinical studies show the unique capabilities of the method. The accuracy of the fibroglandular segmentation and its relevance to breast density in imaging is mentioned. The compatibility with artificial intelligence (AI) is shown and clinical results discussed, concluding that low-frequency 3D ultrasound volography is a powerful 3D ultrasound imaging technique for microanatomic and quantitative features of the breast with good potential for AI utilization to provide an imaging technique that will quantitatively improve clinical performance.


Asunto(s)
Inteligencia Artificial , Relevancia Clínica , Imagenología Tridimensional/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA