Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.104
Filtrar
1.
ChemSusChem ; : e202401535, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243152

RESUMEN

Anode-free Lithium metal batteries, with their high energy density (>500 Wh/kg), are emerging as a promising solution for high-energy-density rechargeable batteries. However, the Coulombic Efficiency and capacity often decline due to interface side reactions. To address this, a lithiophilic layer is introduced, promoting stable and uniform Li deposition. Despite its effectiveness, this layer often undergoes electrochemical deactivation over time. This work investigates lithiophilic silver (Ag), prepared via magnetron sputtering on a copper (Cu) current collector. Finite element simulations identify stress changes from alloying reactions as a key cause of Ag particle pulverization and deactivation. A high Young's modulus coating layer is proposed to mitigate this. The Ag2TiO3@Ag@TiO2@Cu composite electrode, designed with multi-layer structures, demonstrates a slower deactivation process through galvanostatic electrochemical cycling. Characterization methods such as SEM, AFM, and TEM confirm the suppression of Ag particle pulverization, while uncoated Ag fractures and deactivates. This work uncovers a potential failure mechanism of lithiophilic metallic nanoparticles and proposes a strategy for deactivation suppression using an artificial coating layer.

2.
Nano Lett ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315654

RESUMEN

The introduction of nitrogen vacancies has been shown to be an effective way to tune the plasmonic properties of refractory titanium nitrides. However, its underlying mechanism remains debated due to the lack of high-quality single-crystalline samples and a deep understanding of electronic properties. Here, a series of epitaxial titanium nitride films with varying nitrogen vacancy concentrations (TiNx) were synthesized. Spectroscopic ellipsometry measurements revealed that the plasmon energy could be tuned from 2.64 eV in stoichiometric TiN to 3.38 eV in substoichiometric TiNx. Our comprehensive analysis of electrical and plasmonic properties showed that both the increased electronic states around the Fermi level and the decreased carrier effective mass due to the modified electronic band structures are responsible for tuning the plasmonic properties of TiNx. Our findings offer a deeper understanding of the tunable plasmonic properties in epitaxial TiNx films and are beneficial for the development of nitride plasmonic devices.

3.
Nanomaterials (Basel) ; 14(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269048

RESUMEN

In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. Annealing was performed in a nitrogen atmosphere at temperatures ranging from 400 to 600 °C, and the process lasted anywhere from 1 to 30 min. As a result, it was confirmed that the orthorhombic phase, the main cause of ferroelectricity, was dominant after a post-anneal at 600 °C for 30 min. Additionally, it was observed that interface mixing between hafnium oxide and the substrate may degrade ferroelectricity. Accordingly, the highest remanent polarization, measured at 14.24 µC/cm2, was observed with the Pt electrode. This finding was further corroborated by piezo force microscopy and endurance tests, with the results being significant compared to previously reported values. This analysis demonstrates that optimizing substrate and annealing conditions, rather than doping, can enhance the ferroelectricity of hafnium oxide, laying the foundation for the future development of ferroelectric-based transistors.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39259945

RESUMEN

Magnetically responsive soft biomaterials are at the forefront of bioengineering and biorobotics. We have created a magnetic hybrid material by coupling silk fibroin─i.e., a natural biopolymer with an optimal combination of biocompatibility and mechanical robustness─with the FeCo alloy, the ferromagnetic material with the highest saturation magnetization. The material is in the form of a 6 µm-thick silk fibroin film, coated with a FeCo layer (nominal thickness: 10 nm) grown by magnetron sputtering deposition. The sputtering deposition technique is versatile and eco-friendly and proves effective for growing the magnetic layer on the biopolymer substrate, also allowing one to select the area to be decorated. The hybrid material is biocompatible, lightweight, flexible, robust, and water-resistant. Electrical, structural, mechanical, and magnetic characterization of the material, both as-prepared and after being soaked in water, have provided information on the adhesion between the silk fibroin substrate and the FeCo layer and on the state of internal mechanical stresses. The hybrid film exhibits a high magnetic bending response under a magnetic field gradient, thanks to an ultralow fraction of the FeCo component (less than 0.1 vol %, i.e., well below 1 wt %). This reduces the risk of adverse health effects and makes the material suitable for bioactuation applications.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39264035

RESUMEN

The swift evolution of contemporary electronics products, such as flexible screens and wearable electronic devices, highlights the significance of flexible protective coatings, which combine superior mechanical and optical properties. Even though the recently developed polymer protective coatings can satisfy requirements for flexibility and transparency, their intrinsic nature often results in a hardness below 1 GPa, rendering them susceptible to scratches. On the other hand, traditional inorganic coatings, known for their high hardness and transparency, fall short of meeting flexibility requirements. In the present study, a SiNx/BN periodical nanolayered coatings (PNCs) structure has been tailored to achieve high mechanical durability, transparency, and flexibility. In SiNx/BN PNCs, the optical and mechanical properties of the single-layer SiNx film are crucial to the overall performance of the PNCs. Therefore, pulse direct current (DC) magnetron sputtering was optimized first to enhance the ionization efficiency of Si and N, thereby promoting their reaction and diminishing the presence of elemental silicon in SiNx. The effects of the pulse frequency and duty cycle on SiNx were evaluated. Additionally, the influence of the thickness ratio and modulation periods on the overall performance of the SiNx/BN PNCs was investigated. As a result, a SiNx/BN coating with sapphire-grade hardness, almost no optical absorption in the visible-near-infrared (vis-NIR) range, high wear resistance, and exceptional flexibility was demonstrated.

6.
Sci Rep ; 14(1): 21653, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289363

RESUMEN

The oxidation resistance of Hf0.28B0.72 and Hf0.11Al0.20B0.69 thin films was investigated comparatively at 700 °C for up to 8 h. Single-phase solid solution thin films were co-sputtered from HfB2 and AlB2 compound targets. After oxidation at 700 °C for 8 h an oxide scale thickness of 31  ±  2 nm was formed on Hf0.11Al0.20B0.69 which corresponds to 14% of the scale thickness measured on Hf0.28B0.72. The improved oxidation resistance can be rationalized based on the chemical composition and the morphology of the formed oxide scales. On Hf0.28B0.72 the formation of a porous, O, Hf, and B-containing scale and the formation of crystalline HfO2 is observed. Whereas on Hf0.11Al0.20B0.69 a dense, primarily amorphous scale containing O, Al, B as well as approximately 3 at% of Hf forms, which reduces the oxidation kinetics significantly by passivation. Benchmarking Hf0.11Al0.20B0.69 with Ti-Al-based boride and nitride thin films with similar Al concentrations reveals superior oxidation behavior of the Hf-Al-based thin film. The incorporation of few at% of Hf in the oxide scale decelerates oxidation kinetics at 700 °C and leads to a reduction in oxide scale thickness of 21% and 47% compared to Ti0.12Al0.21B0.67 and Ti0.27Al0.21N0.52, respectively. Contrary to Ti-Al-based diborides, Hf0.11Al0.20B0.69 shows excellent oxidation behavior despite B-richness.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39301816

RESUMEN

Barium disilicide (BaSi2) is a thin-film solar cell material composed of abundant elements, and its application potential is further enhanced by its formation on inexpensive substrates, such as glass. The effect of the substrate temperature on the co-sputtering of BaSi2 and Ba targets to form BaSi2 films on Si(111) and TiN/glass substrates was investigated. Contrary to expectations, the photoresponsivity reached maximum values exceeding 5 and 2 A W-1, respectively, the highest value ever reported for as-deposited samples formed at 750 °C, more than 100 °C higher than those reported previously. Because the photoresponsivity is proportional to carrier lifetime, this result indicates that high-temperature growth can bring out the high performance of BaSi2 as a light-absorbing layer. Because amorphous SiC (a-SiC) has a larger forbidden band gap and electron affinity than BaSi2, it is considered suitable as an electron transport layer (ETL) material for BaSi2 solar cells. On the basis of this, the formation of BaSi2 (absorption layer)/a-SiC (ETL)/TiN (electrode)/glass heterojunctions was also attempted, and the layered structure was examined by cross-sectional transmission electron microscopy (TEM). Polycrystalline BaSi2 films were found to be even on the amorphous layer by TEM. A high photoresponsivity of over 2 A W-1 was obtained. Therefore, the BaSi2/a-SiC/TiN structure provides a guideline for the structural design of BaSi2-based thin-film solar cells on glass.

8.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275602

RESUMEN

ZnO film ultrasonic transducers for temperature and stress measurements with dual-mode wave excitation (longitudinal and shear) were deposited using the reactive RF magnetron sputtering technique on Si and stainless steel substrates and construction steel bolts. It was found that the position in the substrate plane had a significant effect on the structure and ultrasonic performance of the transducers. The transducers deposited at the center of the deposition zone demonstrated a straight columnar structure with a c-axis parallel to the substrate normal and the generation of longitudinal waves. The transducers deposited at the edge of the deposition zone demonstrated inclined columnar structures and the generation of dominant shear or longitudinal shear waves. Transducers deposited on the bolts with dual-wave excitation were used to study the effects of high temperatures in the range from 25 to 525 °C and tensile stress in the range from 0 to 268 MPa on ultrasonic response. Dependencies between changes in the relative time of flight and temperature or axial stress were obtained. The dependencies can be described by second-order functions of temperature and stress. An analysis of the contributions of thermal expansion, strain, and the speed of sound to changes in the time of flight was performed. At high temperatures, a decrease in the signal amplitude was observed due to the decreasing resistivity of the transducer. The ZnO ultrasonic transducers can be used up to temperatures of ~500 °C.

9.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275731

RESUMEN

Accurate measurement of the pretightening stress for bolts has great significance for improving the assembly quality and safety, especially in severe environments. In this study, AlN thin film transducers were deposited on GH4169 nickel base alloy bolts using the RF magnetron sputtering, enabling a systematic investigation into the correlation between structures and the intensity of ultrasonic echo signals. Employing the finite element method resulted in consistency with the experimental data, enabling further exploration of the enhancement mechanism. With the increasing thickness of both the piezoelectric layer and the electrode layer, the intensity of the ultrasonic echo signals saw a great enhancement. The maximum-intensity observed increase is 14.7 times greater than that of the thinnest layers. Specifically, the thicker piezoelectric layer improves its mechanical displacement, while the increased thickness of the electrode layer contributes to better densification. An electrode diameter of nearly 4 mm is optimal for an AlN thin film transducer of M8 bolts. For pretightening the stress measurement, the sample with a strong and stable echo signal shows a low measurement error of pretightening below ±2.50%.

10.
ACS Appl Mater Interfaces ; 16(36): 47961-47972, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39191509

RESUMEN

High-performance flexible Sn-doped In2O3 (indium tin oxide, ITO) electrodes were fabricated using a multicoating process on colorless polyimide (CPI) substrates for flexible perovskite solar cells (FPSCs). The effects of different coating sequences on the electrical, optical, and mechanical properties of the flexible ITO electrodes were thoroughly investigated after preparing them with direct-current magnetron sputtering (DMS) and arc plasma ion plating (APIP). Although both the sputtered ITO (SITO)/arc ion-plated ITO (AITO) film and the AITO/SITO film showed similarly low sheet resistance (18.69-25.29 Ω/sq) and high optical transmittance (94.96-96.85%), the coating sequence significantly affected the mechanical flexibility of the multicoated ITO films. The 120 nm-thick SITO/AITO electrode exhibited small outer and inner critical bending radii (3 mm and 3 mm, respectively) compared to the AITO/SITO electrode (4 and 5 mm, respectively). Owing to better adhesion of the arc-ion-plated ITO bottom layer and the amorphous structure of the top SITO layer, the SITO/AITO electrode exhibited excellent mechanical flexibility and durability. In addition, an FPSC using the SITO/AITO electrode achieved a higher power conversion efficiency (15.09%) than that with the AITO/SITO electrode (13.22%). This improvement was attributed to its high transmittance, low sheet resistance, smooth surface morphology, and enhanced hole collection efficiency. These findings highlight the efficacy of the combined DMS and APIP multicoating process for fabricating high-quality flexible ITO electrodes for high-performance FPSCs.

11.
J Funct Biomater ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39194662

RESUMEN

This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.

12.
Sci Rep ; 14(1): 18885, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143374

RESUMEN

To improve the mechanical properties of the rolling body surface of wind power bearings, extend its service life. In this study, a large-scale molecular/atomic parallel processor LAMMPS was introduced, and then the process of magnetron sputtering technology in the preparation of DLC/Ni-DLC thin films on the 42CrMo substrate material was simulated. The effects of deposition parameters such as sputtering temperature, sputtering voltage, deposition air pressure, and Ni doping on the residual stress, film base bonding, and organizational structure of the thin films were investigated. The simulation results show that for different deposition parameters, the atomic tensile and compressive stresses existed simultaneously in DLC/Ni-DLC films, and the residual stresses were between - 0.504-5.003 Gpa and - 2.11-0.065 Gpa, respectively; the doping of Ni effectively improved the distribution of hybrid structure and the mechanical properties of the DLC films, and the ratio of the sp3 hybrid structure in the film organization was about 2.56 times higher than that of the non-doped films, and the membrane base bonding force was increased by 32.78% and the residual stress is reduced and transitioned from tensile stress to compressive stress. In addition, it was observed that the thickness of the mixed layer of DLC/Ni-DLC films with the substrate was not increased after the thickness of the mixed layer was extended to about 2 nm. Nickel doping and reasonable control of deposition parameters help to reduce the residual stress and improve the bonding strength of the film by changing the organizational structure of the film, which provides an important theoretical and scientific basis for the preparation of low-stress, high-performance and long-life DLC films and the wide application of rolling bodies for wind power bearings under complex working conditions.

13.
Adv Sci (Weinh) ; : e2403845, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120071

RESUMEN

Magnetron-sputtered thermoelectric thin films have the potential for reproducibility and scalability. However, lattice mismatch during sputtering can lead to increased defects in the epitaxial layer, which poses a significant challenge to improving their thermoelectric performance. In this work, nanocrystalline n-type Bi2Te3 thin films with an average grain size of ≈110 nm are prepared using high-temperature sputtering and post-annealing. Herein, it is demonstrated that high-temperature treatment exacerbates Te evaporation, creating Te vacancies and electron-like effects. Annealing improves crystallinity, increases grain size, and reduces defects, which significantly increases carrier mobility. Furthermore, the pre-deposited Ti additives are ionized at high temperatures and partially diffused into Bi2Te3, resulting in a Ti doping effect that increases the carrier concentration. Overall, the 1 µm thick n-type Bi2Te3 thin film exhibits a room temperature resistivity as low as 3.56 × 10-6 Ω∙m. Notably, a 5 µm thick Bi2Te3 thin film achieves a record power factor of 6.66 mW mK-2 at room temperature, which is the highest value reported to date for n-type Bi2Te3 thin films using magnetron sputtering. This work demonstrates the potential for large-scale of high-quality Bi2Te3-based thin films and devices for room-temperature TE applications.

14.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124342

RESUMEN

This research introduces a hydrogen sensor made from a thin film of magnesium zinc oxide (MgZnO) deposited using a technique called radiofrequency co-sputtering (RF co-sputtering). Separate magnesium oxide (MgO) and zinc oxide (ZnO) targets were used to deposit the MgZnO film, experimenting with different deposition times and power levels. The sensor performed best (reaching a sensing response of 2.46) when exposed to hydrogen at a concentration of 1000 parts per million (ppm). This peak performance occurred with a MgZnO film thickness of 432 nanometers (nm) at a temperature of 300 °C. Initially, the sensor's responsiveness increased as the film thickness grew. This is because thicker films tend to have more oxygen vacancies, which are imperfections that play a role in the sensor's function. However, further increases in film thickness beyond the optimal point harmed performance. This is attributed to the growth of grains within the film, which hindered its effectiveness. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were employed to thoroughly characterize the quality of the MgZnO thin film. These techniques provided valuable insights into the film's crystal structure and morphology, crucial factors influencing its performance as a hydrogen sensor.

15.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124945

RESUMEN

We show that in plasmas generated in deuterium in the presence of sputtered W surfaces, various molecular tungsten species are formed, whose chemical composition depends on the presence of gaseous impurities, namely, nitrogen, oxygen, and hydrogen. A magnetron discharge was used for plasma sustaining, and the species were investigated by mass spectrometry and optical emission spectroscopy. The identified tungsten-containing molecules are described by the chemical formula WOxNyDzHt, where x = 0-4, y = 0-3, z = 0-3, t = 0-5. Presumptively, even higher mass tungsten molecular species are present in plasma, which were not detected because of the limitation of the spectrometer measurement range to 300 amu. The presence of these molecules will likely impact the W particle balance and dust formation mechanisms in fusion plasmas.

16.
Nanomaterials (Basel) ; 14(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195394

RESUMEN

As a layered material with single/multi-atom thickness, two-dimensional transition metal sulfide WS2 has attracted extensive attention in the field of science for its excellent physical, chemical, optical, and electrical properties. The photoelectric properties of WS2 are even more promising than graphene. However, there are many existing preparation methods for WS2, but few reports on its direct growth on tungsten films. Therefore, this paper studies its preparation method and proposes an innovative two-dimensional material preparation method to grow large-sized WS2 with higher quality on metal film. In this experiment, it was found that the reaction temperature could regulate the growth direction of WS2. When the temperature was below 950 °C, the film showed horizontal growth, while when the temperature was above 1000 °C, the film showed vertical growth. At the same time, through Raman and band gap measurements, it is found that the different thicknesses of precursor film will lead to a difference in the number of layers of WS2. The number of layers of WS2 can be controlled by adjusting the thickness of the precursor.

17.
Sci Technol Adv Mater ; 25(1): 2378684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135761

RESUMEN

The cubic perovskite SrMoO3 with a paramagnetic ground state and remarkably low room-temperature resistivity has been considered as a suitable candidate for the new-era oxide-based technology. However, the difficulty of preparing single-phase SrMoO3 thin films by hydrogen-free sputtering has hindered their practical use, especially due to the formation of thermodynamically favorable SrMoO4 impurity. In this work, we developed a radio frequency sputtering technology enabling the reduction reaction and achieved conductive epitaxial SrMoO3 films with pure phase from a SrMoO4 target in a hydrogen-free, pure argon environment. We demonstrated the significance of controlling the target-to-substrate distance (TSD) on the synthesis of SrMoO3; the film resistivity drastically changes from 1.46 × 105 µΩ·cm to 250 µΩ·cm by adjusting the TSD. Cross-sectional microstructural analyses demonstrated that films with the lowest resistivity, deposited for TSD = 2.5 cm, possess a single-phase SrMoO3 with an epitaxial perovskite structure. The formation mechanism of the conductive single-phase SrMoO3 films can be attributed to the plasma-assisted growth process by tuning the TSD. Temperature-dependent resistivity and Hall effect studies revealed metal-like conducting properties for low-resistive SrMoO3 films, while the high-resistive ones displayed semiconductor-like behavior. Our approach makes hydrogen-free, reliable and cost-efficient scalable deposition of SrMoO3 films possible, which may open up promising prospects for a wide range of future applications of oxide materials.


For the first time, we developed a plasma-assisted RF sputtering technology enabling the reduction reaction for the synthesis of single-phase conductive SrMoO3 epitaxial films from insulating SrMoO4 in pure-argon atmosphere.

18.
Materials (Basel) ; 17(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063891

RESUMEN

The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the kinetics of thermal processes during sputtering of a target of the new type. The analysis was performed for a sandwich target with internal copper and external titanium plates when the discharge power varied in the range of 400-1200 W. The heating of the external target plate is described by a two-dimensional homogeneous Fourier equation. The solution to the equation reveals how the kinetics of the external plate's surface temperature distribution depends on the discharge power. To study the heat flow heating the substrate, the external plate is presented in the form of an additive set of small-sized surface heat sources. Previously unknown features of the thermal process are established. It is shown that numerical modeling adequately describes the experimental results.

19.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057890

RESUMEN

Titanium nitride (TiN) is a candidate material for several plasmonic applications, and pulsed laser ablation in liquids (PLAL) represents a rapid, scalable, and environmentally friendly approach for the large-scale production of nanomaterials with customized properties. In this work, the nanosecond PLAL process is developed, and we provide a concise understanding of the process parameters, such as the solvent and the laser fluence and pulse wavelength, to the size and structure of the produced TiN nanoparticles (NPs). TiN films of a 0.6 µm thickness developed by direct-current (DC) magnetron sputtering were used as the ablation targets. All laser process parameters lead to the fabrication of spherical NPs, while the laser pulse fluence was used to control the NPs' size. High laser pulse fluence values result in larger TiN NPs (diameter around 42 nm for 5 mJ and 25 nm for 1 mJ), as measured from scanning electron microscopy (SEM). On the other hand, the wavelength of the laser pulse does not affect the mean size of the TiN NPs (24, 26, and 25 nm for 355, 532, and 1064 nm wavelengths, respectively). However, the wavelength plays a vital role in the quality of the produced TiN NPs. Shorter wavelengths result in NPs with fewer defects, as indicated by Raman spectra and XPS analysis. The solvent type also significantly affects the size of the NPs. In aqueous solutions, strong oxidation of the NPs is evident, while organic solvents such as acetone, carbides, and oxides cover the TiN NPs.

20.
ChemSusChem ; : e202401041, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979895

RESUMEN

In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈µg/cm2) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation. The present results provide new insights on the design of nano-engineered heterocomposites featuring improved performances thanks to Pt coupling with g-CN, a low-cost and environmentally friendly visible light-active semiconductor. Overall, this work might open attractive avenues for the generation of green hydrogen via aqueous ethanol electrolysis and the photo-promoted alcohol electrooxidation in fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA