RESUMEN
Intercellular protuberances (IPs) are projections on the cell surface and have been reported for families of ferns, Gymnosperms, and Angiosperms. Data on the type, chemical composition, and distribution of these structures among vascular plants are still scarce. Here, we investigate the occurrence, distribution, type of IPs among species of eight Dennstaedtiaceae genera and verify the taxonomic significance of these protuberances in the family. Rhizomes of 23 species of Dennstaedtiaceae from field and herbaria collections were analyzed by light microscopy and scanning electron microscopy. Histochemical tests were performed to identify the main classes of IPs chemical compounds. Two types of IPs were observed in Dennstaedtiaceae species: strand and filament types. They were observed in the intercellular spaces of the parenchyma in the cortex and pith regions. Overall, protuberances are irregularly shaped, with angustate or spheroidal apices. Their polysaccharide nature and pectic constitution were confirmed by histochemical tests. Concerning Pteridium arachnoideum (Kaulf.) Maxon subsp. arachnoideum, IPs have confirmed phenolic composition. Evidence indicates that IPs in Dennstaedtiaceae originate from the fragmentation of the middle lamella and that they have a structural function as well as protection against pathogens. In lateral-line aerenchyma, the occurrence of filament-type IPs may be related to the larger intercellular spacing in the cortex region, providing greater mechanical resistance. We have expanded the data on the occurrence of IPs in the Dennstaedtiaceae, which appear to be notable characters for the family. Moreover, the data presented herein confirmed the polysaccharide and pectic nature of these structures. However, we were unable to find links between IPs and taxonomy and evolution of the Dennstaedtiaceae. On the other hand, different IPs types were identified between the clades Dennstaedtioideae (strand-type IPs) and Hypolepidoideae (filament-type IPs, with exceptions).(AU)
Asunto(s)
Rizoma/química , Dennstaedtiaceae/anatomía & histología , Inmunohistoquímica/métodosRESUMEN
Asparagaceae's large embryo sacs display a central cell nucleus polarized toward the chalaza, which means the sperm nucleus that fuses with it during double fertilization migrates an atypical long distance before karyogamy. Because of the size and inverted polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization process is supported by an F-actin machinery different from the short-range F-actin structures observed in Arabidopsis and other plant models. Here, we analyzed the F-actin dynamics of Agave inaequidens, a classical Asparagaceae, before, during, and after the central cell fertilization. Several parallel F-actin cables, spanning from the central cell nucleus to the micropylar pole, and enclosing the vacuole, were observed. As fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared, connecting the central cell nucleus with the micropylar pole near the egg cell. This mega-cable wrapped the sperm nucleus in transit to fuse with the central cell nucleus. Once karyogamy finished, and the endosperm started to develop, the mega-cable disassembled, but new F-actin structures formed. These observations suggest that Asparagaceae, and probably other plant species with similar embryo sacs, evolved an F-actin machinery specifically adapted to support the migration of the fertilizing sperm nucleus within a large-sized and polarity-inverted central cell.
RESUMEN
The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.
RESUMEN
The in-vitro effects of flurochloridone and its formulations Twin Pack Gold® (25% a.i.) and Rainbow® (25% a.i.) were evaluated in Chinese Hamster Ovary K1 (CHO-K1) cells. The cytokinesis-block micronucleus cytome (CBMN-cyt) and single-cell gel electrophoresis (SCGE) assays were used. The activities were tested within the range of final concentrations of 0.25-15 µg flurochloridone/mL. The results demonstrated that both the flurochloridone and Rainbow® were not able to induce micronuclei (MN). On the other hand, Twin Pack Gold® only increased the frequency of MN at 5 µg/mL. Furthermore, 10 and 15 µg/mL of both formulations resulted in a cellular cytotoxicity demonstrated by alterations in the nuclear division index and cellular death. SCGE assay appeared to be a more sensitive bioassay for detecting primary DNA strand breaks at lower concentrations of flurochloridone than MN did. A marked increase in the genetic damage index was observed when 5 and 15 µg/mL of both flurochloridone and Rainbow® but only when 15 µg/mL of Twin Pack Gold® were used. This is the first report demonstrating that flurochloridone and its two commercial formulations are able to induce single-strand DNA breaks in vitro on mammalian cells.