Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
J Pain ; : 104645, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089662

RESUMEN

Chronic neuropathic pain has been one of the prominent causes of disability, and acupuncture has shown promise in treatment. The present study aimed to characterize acupuncture modulation of chronic neuropathic pain and explore the related functional brain changes. Sixty chronic sciatica patients were divided into acupuncture group or sham acupuncture group and received 10 sessions of treatment during 4 weeks. The Visual Analog Scale (VAS) for leg pain, Oswestry Disability Index (ODI), and resting-state functional magnetic resonance images were assessed at baseline and after treatment. Then, fractional amplitudes of low-frequency fluctuations (fALFF) and support vector regression (SVR) analyses were performed. Compared to sham acupuncture, acupuncture significantly improved symptoms, including VAS for leg pain and ODI. In addition, acupuncture exhibited increased fALFF of the right superior parietal lobule (SPL) and right postcentral gyrus (PoCG). Furthermore, the actual 4-week ODI values were positively correlated with the SVR predicted values based on the right SPL fALFF and baseline clinical measurements. These results indicate that the spontaneous neural activity of the right SPL and right PoCG may be involved in the modulation of acupuncture in chronic neuropathic pain. In addition, the spontaneous neural activity of the right SPL might be used as the predictor of response to acupuncture therapy. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry, ChiCTR2100044585, http://www.chictr.org.cn PERSPECTIVE: This clinical neuroimaging study elucidated the neural basis of acupuncture in chronic sciatica. Neurological indicators and clinical measurements could be used as potential predictors of acupuncture response. This study combines neuroimaging and artificial intelligence techniques to highlight the potential of acupuncture for the treatment of chronic neuropathic pain.

2.
Sci Rep ; 14(1): 18499, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122763

RESUMEN

In recent studies, artificial intelligence and machine learning methods give higher accuracy than other prediction methods in large data sets with complex structures. Instead of statistical methods, artificial intelligence, and machine learning are used due to the difficulty of constructing mathematical models in multi-parameter and multivariate problems. In this study, predictions of length-weight relationships and meat productivity were generated by machine learning models using measurement data of male and female crayfish in the narrow-clawed crayfish population living in Apolyont Lake. The data set was created using the growth performance and morphometric characters from 1416 crayfish in different years to determine the length-weight relationship and length-meat yield. Statistical methods, artificial intelligence, and machine learning are used due to the difficulty of constructing mathematical models in multi-parameter and multivariate problems. The analysis results show that most models designed as an alternative to traditional estimation methods in future planning studies in sustainable fisheries, aquaculture, and natural sources management are valid for machine learning and artificial intelligence. Seven different machine learning algorithms were applied to the data set and the length-weight relationships and length-meat yields were evaluated for both male and female individuals. Support vector regression (SVR) has achieved the best prediction performance accuracy with 0.996 and 0.992 values for the length-weight of males and females, with 0.996 and 0.995 values for the length-meat yield of males and females. The results showed that the SVR outperforms the others for all scenarios regarding the accuracy, sensitivity, and specificity metrics.


Asunto(s)
Astacoidea , Aprendizaje Automático , Animales , Astacoidea/anatomía & histología , Astacoidea/crecimiento & desarrollo , Masculino , Femenino , Carne , Acuicultura/métodos , Inteligencia Artificial
3.
Sci Rep ; 14(1): 19207, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160194

RESUMEN

The growing integration of renewable energy sources into grid-connected microgrids has created new challenges in power generation forecasting and energy management. This paper explores the use of advanced machine learning algorithms, specifically Support Vector Regression (SVR), to enhance the efficiency and reliability of these systems. The proposed SVR algorithm leverages comprehensive historical energy production data, detailed weather patterns, and dynamic grid conditions to accurately forecast power generation. Our model demonstrated significantly lower error metrics compared to traditional linear regression models, achieving a Mean Squared Error of 2.002 for solar PV and 3.059 for wind power forecasting. The Mean Absolute Error was reduced to 0.547 for solar PV and 0.825 for wind scenarios, and the Root Mean Squared Error (RMSE) was 1.415 for solar PV and 1.749 for wind power, showcasing the model's superior accuracy. Enhanced predictive accuracy directly contributes to optimized resource allocation, enabling more precise control of energy generation schedules and reducing the reliance on external power sources. The application of our SVR model resulted in an 8.4% reduction in overall operating costs, highlighting its effectiveness in improving energy management efficiency. Furthermore, the system's ability to predict fluctuations in energy output allowed for adaptive real-time energy management, reducing grid stress and enhancing system stability. This approach led to a 10% improvement in the balance between supply and demand, a 15% reduction in peak load demand, and a 12% increase in the utilization of renewable energy sources. Our approach enhances grid stability by better balancing supply and demand, mitigating the variability and intermittency of renewable energy sources. These advancements promote a more sustainable integration of renewable energy into the microgrid, contributing to a cleaner, more resilient, and efficient energy infrastructure. The findings of this research provide valuable insights into the development of intelligent energy systems capable of adapting to changing conditions, paving the way for future innovations in energy management. Additionally, this work underscores the potential of machine learning to revolutionize energy management practices by providing more accurate, reliable, and cost-effective solutions for integrating renewable energy into existing grid infrastructures.

4.
Front Plant Sci ; 15: 1398762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145192

RESUMEN

Rice is a staple crop in Asia, with more than 400 million tons consumed annually worldwide. The protein content of rice is a major determinant of its unique structural, physical, and nutritional properties. Chemical analysis, a traditional method for measuring rice's protein content, demands considerable manpower, time, and costs, including preprocessing such as removing the rice husk. Therefore, of the technology is needed to rapidly and nondestructively measure the protein content of paddy rice during harvest and storage stages. In this study, the nondestructive technique for predicting the protein content of rice with husks (paddy rice) was developed using near-infrared spectroscopy and deep learning techniques. The protein content prediction model based on partial least square regression, support vector regression, and deep neural network (DNN) were developed using the near-infrared spectrum in the range of 950 to 2200 nm. 1800 spectra of the paddy rice and 1200 spectra from the brown rice were obtained, and these were used for model development and performance evaluation of the developed model. Various spectral preprocessing techniques was applied. The DNN model showed the best results among three types of rice protein content prediction models. The optimal DNN model for paddy rice was the model with first-order derivative preprocessing and the accuracy was a coefficient of determination for prediction, Rp 2 = 0.972 and root mean squared error for prediction, RMSEP = 0.048%. The optimal DNN model for brown rice was the model applied first-order derivative preprocessing with Rp 2 = 0.987 and RMSEP = 0.033%. These results demonstrate the commercial feasibility of using near-infrared spectroscopy for the non-destructive prediction of protein content in both husked rice seeds and paddy rice.

5.
Big Data ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042595

RESUMEN

Survival models have found wider and wider applications in credit scoring recently due to their ability to estimate the dynamics of risk over time. In this research, we propose a Buckley-James safe sample screening support vector regression (BJS4VR) algorithm to model large-scale survival data by combing the Buckley-James transformation and support vector regression. Different from previous support vector regression survival models, censored samples here are imputed using a censoring unbiased Buckley-James estimator. Safe sample screening is then applied to discard samples that guaranteed to be non-active at the final optimal solution from the original data to improve efficiency. Experimental results on the large-scale real lending club loan data have shown that the proposed BJS4VR model outperforms existing popular survival models such as RSFM, CoxRidge and CoxBoost in terms of both prediction accuracy and time efficiency. Important variables highly correlated with credit risk are also identified with the proposed method.

6.
Sci Rep ; 14(1): 16892, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043713

RESUMEN

In this paper, a novel Moth-Flame Optimization (MFO) algorithm, namely MFO algorithm enhanced by Multiple Improvement Strategies (MISMFO) is proposed for solving parameter optimization in Multi-Kernel Support Vector Regressor (MKSVR), and the MISMFO-MKSVR model is further employed to deal with the software effort estimation problems. In MISMFO, the logistic chaotic mapping is applied to increase initial population diversity, while the mutation and flame number phased reduction mechanisms are carried out to improve the search efficiency, as well the adaptive weight adjustment mechanism is used to accelerate convergence and balance exploration and exploitation. The MISMFO model is verified on fifteen benchmark functions and CEC 2020 test set. The results show that the MISMFO has advantages over other meta-heuristic algorithms and MFO variants in terms of convergence speed and accuracy. Additionally, the MISMFO-MKSVR model is tested by simulations on five software effort datasets and the results demonstrate that the proposed model has better performance in software effort estimation problem. The Matlab code of MISMFO can be found at https://github.com/loadstar1997/MISMFO .

7.
Materials (Basel) ; 17(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39063785

RESUMEN

The growing demand for sustainable materials has significantly increased interest in biocomposites, which are made from renewable raw materials and have excellent mechanical properties. The use of machine learning (ML) can improve our understanding of their mechanical behavior while saving costs and time. In this study, the mechanical behavior of innovative biocomposite sandwich structures under quasi-static out-of-plane compression was investigated using ML algorithms to analyze the effects of geometric variations on load-bearing capacities. A comprehensive dataset of experimental mechanical tests focusing on compression loading was employed, evaluating three ML models-generalized regression neural networks (GRNN), extreme learning machine (ELM), and support vector regression (SVR). Performance indicators such as R-squared (R2), mean absolute error (MAE), and root mean square error (RMSE) were used to compare the models. It was shown that the GRNN model with an RMSE of 0.0301, an MAE of 0.0177, and R2 of 0.9999 in the training dataset, and an RMSE of 0.0874, MAE of 0.0489, and R2 of 0.9993 in the testing set had a higher predictive accuracy. In contrast, the ELM model showed moderate performance, while the SVR model had the lowest accuracy with RMSE, MAE, and R2 values of 0.5769, 0.3782, and 0.9700 for training, and RMSE, MAE, and R2 values of 0.5980, 0.3976 and 0.9695 for testing, suggesting that it has limited effectiveness in predicting the mechanical behavior of the biocomposite structures. The nonlinear load-displacement behavior, including critical peaks and fluctuations, was effectively captured by the GRNN model for both the training and test datasets. The progressive improvement in model performance from SVR to ELM to GRNN was illustrated, highlighting the increasing complexity and capability of machine learning models in capturing detailed nonlinear relationships. The superior performance and generalization ability of the GRNN model were confirmed by the Taylor diagram and Williams plot, with the majority of testing samples falling within the applicability domain, indicating strong generalization to new, unseen data. The results demonstrate the potential of using advanced ML models to accurately predict the mechanical behavior of biocomposites, enabling more efficient and cost-effective development and optimization processes in the field of sustainable materials.

8.
Micromachines (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064430

RESUMEN

The morphology size of laser cladding is a crucial parameter that significantly impacts the quality and performance of the cladding layer. This study proposes a predictive model for the cladding morphology size based on the Least Squares Support Vector Regression (LSSVR) and the Crowned Porcupine Optimization (CPO) algorithm. Specifically, the proposed model takes three key parameters as inputs: laser power, scanning speed, and powder feeding rate, with the width and height of the cladding layer as outputs. To further enhance the predictive accuracy of the LSSVR model, a CPO-based optimization strategy is applied to adjust the penalty factor and kernel parameters. Consequently, the CPO-LSSVR model is established and evaluated against the LSSVR model and the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP) model in terms of relative error metrics. The experimental results demonstrate that the CPO-LSSVR model can achieve a significantly improved relative error of no more than 2.5%, indicating a substantial enhancement in predictive accuracy compared to other methods and showcasing its superior predictive performance. The high accuracy of the CPO-LSSVR model can effectively guide the selection of laser cladding process parameters and thereby enhance the quality and efficiency of the cladding process.

9.
J Chromatogr A ; 1730: 465109, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968662

RESUMEN

The predictive modeling of liquid chromatography methods can be an invaluable asset, potentially saving countless hours of labor while also reducing solvent consumption and waste. Tasks such as physicochemical screening and preliminary method screening systems where large amounts of chromatography data are collected from fast and routine operations are particularly well suited for both leveraging large datasets and benefiting from predictive models. Therefore, the generation of predictive models for retention time is an active area of development. However, for these predictive models to gain acceptance, researchers first must have confidence in model performance and the computational cost of building them should be minimal. In this study, a simple and cost-effective workflow for the development of machine learning models to predict retention time using only Molecular Operating Environment 2D descriptors as input for support vector regression is developed. Furthermore, we investigated the relative performance of models based on molecular descriptor space by utilizing uniform manifold approximation and projection and clustering with Gaussian mixture models to identify chemically distinct clusters. Results outlined herein demonstrate that local models trained on clusters in chemical space perform equivalently when compared to models trained on all data. Through 10-fold cross-validation on a comprehensive set containing 67,950 of our company's proprietary analytes, these models achieved coefficients of determination of 0.84 and 3 % error in terms of retention time. This promising statistical significance is found to translate from cross-validation to prospective prediction on an external test set of pharmaceutically relevant analytes. The observed equivalency of global and local modeling of large datasets is retained with METLIN's SMRT dataset, thereby confirming the wider applicability of the developed machine learning workflows for global models.


Asunto(s)
Aprendizaje Automático , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Cromatografía Liquida/métodos , Máquina de Vectores de Soporte , Análisis por Conglomerados
10.
Neurooncol Adv ; 6(1): vdae112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022646

RESUMEN

Background: The purpose of this study was to elucidate the relationship between distinct brain regions and molecular subtypes in glioblastoma (GB), focusing on integrating modern statistical tools and molecular profiling to better understand the heterogeneity of Isocitrate Dehydrogenase wild-type (IDH-wt) gliomas. Methods: This retrospective study comprised 441 patients diagnosed with new IDH-wt glioma between 2009 and 2020 at Heidelberg University Hospital. The diagnostic process included preoperative magnetic resonance imaging and molecular characterization, encompassing IDH-status determination and subclassification, through DNA-methylation profiling. To discern and map distinct brain regions associated with specific methylation subtypes, a support-vector regression-based lesion-symptom mapping (SVR-LSM) was employed. Lesion maps were adjusted to 2 mm³ resolution. Significance was assessed with beta maps, using a threshold of P < .005, with 10 000 permutations and a cluster size minimum of 100 voxels. Results: Of 441 initially screened glioma patients, 423 (95.9%) met the inclusion criteria. Following DNA-methylation profiling, patients were classified into RTK II (40.7%), MES (33.8%), RTK I (18%), and other methylation subclasses (7.6%). Between molecular subtypes, there was no difference in tumor volume. Using SVR-LSM, distinct brain regions correlated with each subclass were identified: MES subtypes were associated with left-hemispheric regions involving the superior temporal gyrus and insula cortex, RTK I with right frontal regions, and RTK II with 3 clusters in the left hemisphere. Conclusions: This study linked molecular diversity and spatial features in glioblastomas using SVR-LSM. Future studies should validate these findings in larger, independent cohorts to confirm the observed patterns.

11.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894185

RESUMEN

Tool wear prediction is of great significance in industrial production. Current tool wear prediction methods mainly rely on the indirect estimation of machine learning, which focuses more on estimating the current tool wear state and lacks effective quantification of random uncertainty factors. To overcome these shortcomings, this paper proposes a novel method for predicting cutting tool wear. In the offline phase, the multiple degradation features were modeled using the Brownian motion stochastic process and a SVR model was trained for mapping the features and the tool wear values. In the online phase, the Bayesian inference was used to update the random parameters of the feature degradation model, and the future trend of the features was estimated using simulation samples. The estimation results were input into the SVR model to achieve in-advance prediction of the cutting tool wear in the form of distribution densities. An experimental tool wear dataset was used to verify the effectiveness of the proposed method. The results demonstrate that the method shows superiority in prediction accuracy and stability.

12.
Sci Rep ; 14(1): 14590, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918511

RESUMEN

This study explores machine learning (ML) capabilities for predicting the shear strength of reinforced concrete deep beams (RCDBs). For this purpose, eight typical machine-learning models, i.e., symbolic regression (SR), XGBoost (XGB), CatBoost (CATB), random forest (RF), LightGBM, support vector regression (SVR), artificial neural networks (ANN), and Gaussian process regression (GPR) models, are selected and compared based on a database of 840 samples with 14 input features. The hyperparameter tuning of the introduced ML models is performed using the Bayesian optimization (BO) technique. The comparison results show that the CatBoost model is the most reliable and accurate ML model (R2 = 0.997 and 0.947 in the training and testing sets, respectively). In addition, simple and practical design expressions for RCDBs have been proposed based on the SR model with a physical meaning and acceptable accuracy (an average prediction-to-test ratio of 0.935 and a standard deviation of 0.198). Meanwhile, the shear strength predicted by ML models was then compared with classical mechanics-driven shear models, including two prominent practice codes (i.e., ACI318, EC2) and two previous mechanical models, which indicated that the ML approach is highly reliable and accurate over conventional methods. In addition, a reliability-based design was conducted on two ML models, and their reliability results were compared with those of two code standards. The findings revealed that the ML models demonstrate higher reliability compared to code standards.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124738, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945006

RESUMEN

Mid-infrared spectral analysis of glucose in subcutaneous interstitial fluid has been widely employed as a noninvasive alternative to the standard blood-glucose detection requiring blood-sampling via skin-puncturing, but improving the confidence level of such a replacement remains highly desirable. Here, we show that with an innovative metric of attributes in measurements and data-management, a high accuracy in correlating the test results of our improved spectral analysis to those of the standard detection is accomplished. First, our comparative laser speckle contrast imaging of subcutaneous interstitial fluid in fingertips, thenar and hypothenar reveal that spectral measurements from hypothenar, with an attenuated total reflection Fourier transform infrared spectrometer, give much stronger signals than the stereotype measurements from fingertips. Second, we demonstrate that discriminative selection of the spectral locations and ranges, to minimize spectral interference and maximize signal-to-noise, are critically important. The optimal band is pinned at that between 1000 ± 3 cm-1 and1040 ± 3 cm-1. Third, we propose an individual exclusive prediction model by adopting the support vector regression analysis of the spectral data from four subjects. The average predicted coefficient of determination, root mean square error and mean absolute error of four subjects are 0.97, 0.21 mmol/L, 0.17 mmol/L, respectively, and the average probability of being in Zone A of the Clark error grid is 100.00 %. Additionally, we demonstrate with the Bland and Altman plot that our proposed model has the highest consistency with portable blood glucose meter detection method.


Asunto(s)
Glucemia , Máquina de Vectores de Soporte , Humanos , Glucemia/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrofotometría Infrarroja/métodos , Masculino , Análisis de Regresión
14.
Heliyon ; 10(11): e31766, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845912

RESUMEN

This research presents the utilization of an enhanced Sine cosine perturbation with Chaotic perturbation and Mirror imaging strategy-based Salp Swarm Algorithm (SCMSSA), which incorporates three improvement mechanisms, to enhance the convergence accuracy and speed of the optimization algorithm. The study assesses the SCMSSA algorithm's performance against other optimization algorithms using six test functions to show the efficacy of the enhancement strategies. Furthermore, its efficacy in improving Support Vector Regression (SVR) models for CO2 prediction is assessed. The results reveal that the SVR-SCMSSA hybrid model surpasses other hybrid models and standard SVR in terms of training and prediction accuracy by obtaining 95 % accuracy. Its swift convergence, precision, and resistance to local optima position make it an excellent choice for addressing complex problems such as CO2 prediction, with critical implications for sustainability efforts. Moreover, feature importance analysis by SVR-SCMSSA offers valuable insights into the key contributors to CO2 prediction in the dataset, emphasizing the significance and impact of factors such as fossil fuel, Biomass, and Wood as major contributors to CO2 emission. The research suggests the adoption of the SVR-SCMSSA hybrid model for more accurate and reliable CO2 prediction to researchers and policymakers, which is essential for environmental sustainability and climate change mitigation.

15.
J Alzheimers Dis ; 99(4): 1349-1359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820018

RESUMEN

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by brain network dysfunction. Few studies have investigated whether the functional connections between executive control networks (ECN) and other brain regions can predict the therapeutic effect of repetitive transcranial magnetic stimulation (rTMS). Objective: The purpose of this study is to examine the relationship between the functional connectivity (FC) within ECN networks and the efficacy of rTMS. Methods: We recruited AD patients for rTMS treatment. We established an ECN using baseline period fMRI data and conducted an analysis of the ECN's FC throughout the brain. Concurrently, the support vector regression (SVR) method was employed to project post-rTMS cognitive scores, utilizing the connectional attributes of the ECN as predictive markers. Results: The average age of the patients was 66.86±8.44 years, with 8 males and 13 females. Significant improvement on most cognitive measures. We use ECN connectivity and brain region functions in baseline patients as features for SVR model training and fitting. The SVR model could demonstrate significant predictability for changes in Montreal Cognitive Assessment scores among AD patients after rTMS treatment. The brain regions that contributed most to the prediction of the model (the top 10% of weights) were located in the medial temporal lobe, middle temporal gyrus, frontal lobe, parietal lobe and occipital lobe. Conclusions: The stronger the antagonism between ECN and parieto-occipital lobe function, the better the prediction of cognitive improvement; the stronger the synergy between ECN and fronto-temporal lobe function, the better the prediction of cognitive improvement.


Asunto(s)
Enfermedad de Alzheimer , Función Ejecutiva , Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Masculino , Femenino , Anciano , Estimulación Magnética Transcraneal/métodos , Función Ejecutiva/fisiología , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Resultado del Tratamiento , Pruebas Neuropsicológicas , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
16.
Antimicrob Agents Chemother ; 68(7): e0026524, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38808999

RESUMEN

In order to predict the anti-trypanosome effect of carbazole-derived compounds by quantitative structure-activity relationship, five models were established by the linear method, random forest, radial basis kernel function support vector machine, linear combination mix-kernel function support vector machine, and nonlinear combination mix-kernel function support vector machine (NLMIX-SVM). The heuristic method and optimized CatBoost were used to select two different key descriptor sets for building linear and nonlinear models, respectively. Hyperparameters in all nonlinear models were optimized by comprehensive learning particle swarm optimization with low complexity and fast convergence. Furthermore, the models' robustness and reliability underwent rigorous assessment using fivefold and leave-one-out cross-validation, y-randomization, and statistics including concordance correlation coefficient (CCC), [Formula: see text] , [Formula: see text] , and [Formula: see text] . Among all the models, the NLMIX-SVM model, which was established by support vector regression using a nonlinear combination of radial basis kernel function, sigmoid kernel function, and linear kernel function as a new kernel function, demonstrated excellent learning and generalization abilities as well as robustness: [Formula: see text] = 0.9581, mean square error (MSE) = 0.0199 for the training set and [Formula: see text] = 0.9528, MSE = 0.0174 for the test set. [Formula: see text] , [Formula: see text] , CCC, [Formula: see text] , [Formula: see text], and [Formula: see text] are 0.9539, 0.8908, 0.9752, 0.9529, 0.9528, and 0.9633, respectively. The NLMIX-SVM method proved to be a promising way in quantitative structure-activity relationship research. In addition, molecular docking experiments were conducted to analyze the properties of new derivatives, and a new potential candidate drug molecule was ultimately found. In summary, this study will provide help for the design and screening of novel anti-trypanosome drugs.


Asunto(s)
Carbazoles , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte , Carbazoles/farmacología , Tripanocidas/farmacología
17.
Environ Sci Technol ; 58(19): 8404-8416, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698567

RESUMEN

In densely populated urban areas, PM2.5 has a direct impact on the health and quality of residents' life. Thus, understanding the disparities of PM2.5 is crucial for ensuring urban sustainability and public health. Traditional prediction models often overlook the spillover effects within urban areas and the complexity of the data, leading to inaccurate spatial predictions of PM2.5. We propose Deep Support Vector Regression (DSVR) that models the urban areas as a graph, with grid center points as the nodes and the connections between grids as the edges. Nature and human activity features of each grid are initialized as the representation of each node. Based on the graph, DSVR uses random diffusion-based deep learning to quantify the spillover effects of PM2.5. It leverages random walk to uncover more extensive spillover relationships between nodes, thereby capturing both the local and nonlocal spillover effects of PM2.5. And then it engages in predictive learning using the feature vectors that encapsulate spillover effects, enhancing the understanding of PM2.5 disparities and connections across different regions. By applying our proposed model in the northern region of New York for predictive performance analysis, we found that DSVR consistently outperforms other models. During periods of PM2.5 surges, the R-square of DSVR reaches as high as 0.729, outperforming non-spillover models by 2.5 to 5.7 times and traditional spatial metric models by 2.2 to 4.6 times. Therefore, our proposed model holds significant importance for understanding disparities of PM2.5 air pollution in urban areas, taking the first steps toward a new method that considers both the spillover effects and nonlinear feature of data for prediction.


Asunto(s)
Contaminación del Aire , Material Particulado , Máquina de Vectores de Soporte , Humanos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente
18.
Heliyon ; 10(10): e31466, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813159

RESUMEN

Nowadays, electricity has become an integral part of human lives. Most of our daily appliances, tools, and personal belongings are inseparable from electricity. To ensure a proper electricity distribution with an efficient transfer capability, Extra-High Voltage (EHV) transmission towers are needed. To design such a structure, it is of utmost importance to account for the cost of said tower. However, the process to estimate the cost of EHV transmission towers is both time-consuming and strenuous on human labor since a lot of consideration have to be taken. To overcome this, an imperative requirement exists for a prompt, precise, and automated tool to replace the existing manual cost estimation method. This research endeavor aims to craft a tool using support vector regression (SVR) with the capacity to prognosticate construction expenses for projects involving EHV transmission towers. The exploration of pertinent literature has enabled us to amass historical data and delineate the attributes essential for estimating costs linked to EHV transmission tower construction. The investigation delves into a comprehensive dataset spanning the past decade in Taiwan. Within this timeframe, 317 EHV transmission towers were erected between 2009 and 2019. However, 79 of these instances are excluded due to incomplete information, thereby yielding 238 viable datasets (comprising 75 % of the overall total) to underpin the development of the SVR model. By configuring the parameters to C = 0.2 and γ = 0.1, followed by 5-fold cross-validation, the resultant SVR model attains a remarkable prediction accuracy of 97.91 %, on average. As a result, the proposed SVR-based model can effectively and accurately predict the cost of constructing an EHV transmission tower project and reduce the time spent on estimation, thus contributing to the enhancement of the resilience and robustness of the transmission network system.

19.
Heliyon ; 10(10): e31475, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818146

RESUMEN

Introduction: Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods: In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results: Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion: STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.

20.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791306

RESUMEN

Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.


Asunto(s)
Algoritmos , Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Humanos , Máquina de Vectores de Soporte , Biología Computacional/métodos , Neoplasias/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA