Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.984
Filtrar
1.
Chemistry ; : e202402547, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087783

RESUMEN

An adaptable Fe(II) tetrahedral cage, [Fe4L4][BF4]8 (L = tris(4-(((E)-pyridin-2-ylmethylene)amino)phenyl) phosphate), has been synthesised via self-assembly. By modulating the orientation of its pendant P=O groups, the cage was found to be capable of encapsulating anionic, neutral, and cationic guests, which was confirmed in the solid state via single-crystal X-ray diffraction (SCXRD) and in solution by high-resolution mass spectroscopy (HR-MS), as well as by NMR (1H, 19F, 31P) studies where possible.

2.
Angew Chem Int Ed Engl ; : e202410693, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087854

RESUMEN

Variable stiffness materials have shown considerable application in soft robotics. However, previously reported materials often struggle to reconcile high stiffness, stretchability, toughness, and self-healing ability, because of the inherently conflicting requisite of these properties in molecular design. Herein, we propose a novel strategy that involves incorporating acid-base ionic pairs capable of from strong crosslinking sites into a dense and robust hydrogen-bonding network to construct rigid self-healing polymers with tunable stiffness and excellent toughness. To demonstrate these distinct features, the polymer was employed to serve as the strain-regulation layers within a fiber-reinforced pneumatic actuator (FPA). The exceptional synergy between the configuration versatility of FPA and the dynamic molecular behavior of the supramolecular polymers equips the actuator with simultaneous improvement in motion dexterity, multimodality, loading capacity, robustness, and durability. Additionally, the concept of integrating high dexterity at both macro- and micro-scale is prospective to inspire the design of intelligent yet robust devices across various domains.

3.
R Soc Open Sci ; 11(6): 231979, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39092147

RESUMEN

Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.

4.
ACS Appl Bio Mater ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094036

RESUMEN

Functionalized hydrogels, with their unique and adaptable structures, have attracted significant attention in materials and biomaterials research. Fluorescent hydrogels are particularly noteworthy for their sensing capabilities and ability to mimic cellular matrices, facilitating cell infiltration and tracking of drug delivery. Structural elucidation of hydrogels is crucial for understanding their responses to stimuli such as the pH, temperature, and solvents. This study developed a fluorescent hydrogel by functionalizing chitosan with p-cresol-based quinazolinone aldehyde. Confocal microscopy revealed the hydrogel's intriguing fluorogenic properties. The hydrogel exhibited enhanced fluorescence and a tunable network morphology, influenced by the THF-water ratio. The study investigated the control of gel network reformation in different media and analyzed the fluorescence responses and structural changes of the sugar backbone and fluorophore. Proper selection of mixed solvents is essential for optimizing the hydrogel as a fluorescence probe for bioimaging. This hydrogel demonstrated greater swelling properties, making it highly suitable for drug delivery applications.

5.
Turk J Chem ; 48(2): 329-337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050501

RESUMEN

A new, simple and rapid spectrophotometric method was developed for determination of Sudan Black B in food products by supramolecular solvent-based-vortex-assisted-dispersive liquid liquid microextraction (SUPRAS-VA-DLLME). Extraction solvent type, volume of solvent, pH, volume of THF, centrifugation time, vortex time, and sample volume were investigated as optimization parameters of the developed method. Under the optimum conditions, limit of detection and limit of quantification, preconcentration factor and enhancement factor of the developed method were calculated to be 9.01 µg L-1, 29.73 µg L-1, 20, and 55, respectively. The developed microextraction method was successfully applied to food samples for the determination of Sudan Black B.

6.
Angew Chem Int Ed Engl ; : e202409878, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051526

RESUMEN

Investigating the self-sorting behaviour of assemblies with subtle structural differences is a captivating yet challenging endeavour. Herein, we elucidate the unusual self-sorting behaviour of metallacages with subtle structural differences in batch reactors and microdroplets. Narcissistic self-sorting of metallacages has been observed for two ligands with identical sizes, shapes, and symmetries, with only minor differences in the substituted groups. In particular, the self-sorting process in microdroplets occurs within 1 min at room temperature, in stark contrast to batch reactors, which require equilibration for 30 min. To reveal the mechanism of self-sorting and the role of microdroplets, we conducted a series of experiments and theoretical calculations, including competitive self-assembly, cage-to-cage transformation, control experiments involving model metallacages with larger cavities, noncovalent interaction analysis, and root mean square deviation (RMSD) analysis. This research demonstrates an unusual case of self-sorting of very similar assemblies and provides a new strategy for facilitating the self-sorting efficiency of supramolecular systems.

7.
Chempluschem ; : e202400436, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051905

RESUMEN

Ammeline (AM) is a molecule with a very low reputation in the field of supramolecular community, but with a recently proven potential both experimentally and theoretically. In this work, dispersion-corrected density functional theory (DFT-D) computations and molecular dynamics (MD) simulations were employed to understand the aggregation mechanism of AM in chloroform and water media. Our DFT-D and MD analyzes show that the most important interactions are those formed by the amine groups (-NH2) with both the pyridine-type nitrogen atoms and the carbonyl groups (C=O). In the more polar solvent, the interactions between water molecules and the C=O group prevent the AM from forming more interactions with itself. Nevertheless, four types of dimers involving N-H∙∙∙O interactions were found to exist in water solutions. The overlooked tetrel bond between endocyclic N and C atoms can also stabilize dimers in solution. Moreover, while most AM dimers are enthalpy-driven, our results indicate that the unique DD-AA dimer (D=donor, A=acceptor) that originates cyclic rosettes is entropy-driven.

8.
Small ; : e2403085, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051965

RESUMEN

Control over the self-assembly of small molecules at specific areas is of great interest for many high-tech applications, yet remains a formidable challenge. Here, how the self-assembly of hydrazone-based molecular hydrogelators can be specifically triggered at water-water interfaces for the continuous fabrication of supramolecular microcapsules by virtue of the microfluidic technique is demonstrated. The non-assembling hydrazide- and aldehyde-based hydrogelator precursors are distributed in two immiscible aqueous polymer solutions, respectively, through spontaneous phase separation. In the presence of catalysts, hydrazone-based hydrogelators rapidly form and self-assemble into hydrogel networks at the generated water-water interfaces. Relying on the microfluidic technique, microcapsules bearing a shell of supramolecular hydrogel are continuously produced. The obtained microcapsules can effectively load enzymes, enabling localized enzymatic growth of supramolecular fibrous supramolecular structures, reminiscent of the self-assembly of biological filaments within living cells. This work may contribute to the development of biomimetic supramolecular carriers for applications in biomedicine and fundamental research, for instance, the construction of protocells.

9.
J Colloid Interface Sci ; 676: 626-635, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39053410

RESUMEN

Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (H2O2). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral H2O2 into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T1-weighted magnetic resonance imaging (MRI) contrast enhancement (r1 = 8.13 mM-1 s-1) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.

10.
Nano Lett ; 24(29): 9017-9026, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007530

RESUMEN

The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of ß-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Inmunoterapia , Nanopartículas , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Animales , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Hidrogeles/química , Humanos , Línea Celular Tumoral , Células Dendríticas/inmunología , beta-Ciclodextrinas/química , Neoplasias/terapia , Neoplasias/inmunología , Alginatos/química , Adamantano/química , Adamantano/uso terapéutico
11.
Heliyon ; 10(13): e32936, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040333

RESUMEN

Interaction of the lanthanide nitrates M(NO3)3 (M = Gd, Eu) with methylcucurbit[5]uril (Me10Q[5]) in the presence of transition metal chlorides (ZnCl2 and FeCl3) in acidic media resulted in the isolation of the complexes [Me10Q[5]Gd(H2O)2Cl Gd(H2O)6](ZnCl4)2∙Cl∙8.9H2O (1) and [Me10Q[5]Eu(H2O)3Cl(H3O)](FeCl4)3 (2). The molecular structures of 1 and 2 have been determined by single crystal X-ray crystallography, and reveal discrete complexes which are involved in dense stacking with adjacent Me10Q[5]s linked via H-bonding and/or metal anions resulting in a supramolecular assembly.

12.
Food Chem ; 460(Pt 1): 140557, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39047491

RESUMEN

In this study, a new analytical method was developed using magnetic molecularly imprinted polymers (MMIPs) by employing eco-friendly supramolecular ternary deep eutectic solvents to synthesize these MMIPs for selective extraction of rifaximin. The characterization analysis and adsorption affinity investigation were conducted. The results showed fast adsorption (15 min) with high adsorption capacity (43.20 mg g-1) and selectivity for rifaximin. Various extraction parameters were optimized, achieving recoveries ranging from 86.67% to 99.47% in spiked milk samples using high-performance liquid chromatography (HPLC). The detection and quantification limits were 0.01 mg L-1 and 0.03 mg L-1, respectively. The method exhibited low RSDs (<4.70%) and excellent selectivity, with MMIPs reusable up to seven times with only a 10% performance loss. This study proposes a convenient and reliable method for trace-level rifaximin extraction from milk using eco-friendly MMIPs.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39056580

RESUMEN

There is a synergy between coordination chemistry and supramolecular chemistry that has led to the development of innovative hierarchical composites with diverse functionalities. Here, we present a novel approach for the synthesis and characterization of a metal-organic framework on fullerene (MOFOF) composites, achieved through the integration of coordination chemistry and supramolecular chemistry principles. The hierarchical nature of the MOFOF harnesses the inherent properties of metal-organic frameworks and fullerenes. The two-step synthesis procedure involves controlled assembly of fullerenes as tube-like nanostructures (fullerene nanotube: FNT), their surface functionalization, and the on-surface growth of the MOF (in this case, ZIF-67). The method permits the precise tuning of morphology, effective distribution of MOF-on-FNT, and tight compositional control. The materials were comprehensively structurally characterized using electron microscopy, spectroscopic techniques, and other methods to elucidate the unique features and interactions within the MOFOF composites. The main findings reveal that the novel synthesis and characterization of MOFOF composites demonstrate the successful integration of coordination chemistry and supramolecular chemistry for the designing and fabricating of advanced hierarchical composites with tailored properties, including micro- and mesopore channels, interfacial facets, and defect sites. These properties are expected to lead to numerous potential applications such as gas storage and separation, catalysis, sensing, energy storage, and environmental remediation. However, only the capability of acid vapor sensing was tested and is described here.

14.
Small ; : e2403941, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058224

RESUMEN

Photo-responsive materials have garnered significant interest for their ability to react to non-contact stimuli, though achieving self-healing under gentle conditions remains an elusive goal. In this research, an innovative and straightforward approach for synthesizing silicone elastomers is proposed that not only self-heal at room temperature but also possess unique photochromic properties and adjustable mechanical strength, along with being both transparent and reprocessable. Initially, aldehyde-bifunctional dithiophene-ethylene molecules with dialdehyde groups (DTEM) and isocyanurate (IPDI) is introduced into the aminopropyl-terminated polydimethylsiloxane (H2N-PDMS-NH2) matrix. Subsequently, palladium is incorporated to enhance coordination within the matrix. These silicone elastomers transition to a blue state under 254 nm UV light and revert to transparency under 580 nm light. Remarkably, they demonstrate excellent thermal stability at temperatures up to 100 °C and show superior fatigue resistance. The optical switching capabilities of the silicone elastomers significantly affect both their mechanical characteristics and self-healing abilities. Notably, the PDMS-DTEM-IPDI-@Pd silicone elastomer, featuring closed-loop photo-switching molecules, exhibits a fracture toughness that is 1.3 times greater and a room temperature self-healing efficiency 1.4 times higher than its open-loop counterparts. This novel photo-responsive silicone elastomer offers promising potential for applications in data writing and erasure, UV protective coatings, and micro-trace development.

15.
Angew Chem Int Ed Engl ; : e202411503, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985723

RESUMEN

Anisotropy is crucial for birefringence (Δn) in optical materials, but optimizing it remains a formidable challenge (Δn > 0.3). Supramolecular frameworks incorporating π-conjugated components are promising for achieving enhanced birefringence since their structural diversity and inherent anisotropy. Herein, we first synthesized (C6H6NO2)+Cl- (NAC). And then constructed a halogen bonded supramolecular framework I+(C6H4NO2)- (INA) by halogen aliovalent substitution of Cl- with I+. The organic moieties are protonated and deprotonated nicotinic acid (NA), respectively. The antiparallel arrangement of birefringent-active units in NAC and INA leads to significant differences in bonding characteristics between interlayer and intralayer domains. Moreover, [O···I+···N] halogen bond in 1D [I+(C6H4NO2)-] chain exhibits stronger interactions and stricter directionality, resulting in a more pronounced in-plane anisotropy between the intrachain and interchain directions. Consequently, INA exhibits exceptional birefringent performance, with a value of 0.778 at 550 nm, twice that of NAC (0.363 at 550 nm). This value significantly exceeds those of commercial birefringent crystals, such as CaCO3 (0.172 at 546 nm), and is the highest reported value among ultraviolet birefringent crystals. This work presents a novel design strategy that employs halogen bonds as connection sites and modes for birefringent-active units, opening new avenues for developing high-performance birefringent crystals.

16.
Angew Chem Int Ed Engl ; : e202410431, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987230

RESUMEN

A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.

17.
Small Methods ; : e2400538, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988148

RESUMEN

Here, it is shown that photoirradiation triggered chiral J-aggregates formation of an achiral anionic porphyrin, TPPS (tetrakis(4-sulfonatophenyl) porphyrin), in the presence of chiral triphenylamine (TPA) derivatives. A series of chiral triarylamines linked with aromatic rings is designed through urea or amide bonds. UV-irradiation of self-assembled urea-linked triphenylamine derivatives causes the formation of persistent radical cations in the chlorinated solvents, which subsequently induces the aggregation of TPPS. Transferring chirality of TPA derivatives to achiral TPPS J-aggregates leads to the chiral assemblies with remarkable chiroptical signals. The experimental results demonstrate that, TPA derivatives linked by the urea bond can effectively promote the aggregation of TPPS rather than those with the amide bond although the photo-generated radical cations are both produced. It is suggested that the urea-linked TPA derivatives are more favorable to stable radical cations and thus cause the formation of TPPS chiral J-aggregation. This work may open up an avenue for designing photo-modulated chiral supramolecular assemblies.

18.
Adv Mater ; : e2406671, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988151

RESUMEN

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

19.
Chemistry ; : e202402438, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022852

RESUMEN

Photosynthesis is a complex multi-step process in which light collection is the initial step of photosynthesis and plays an important role in the efficiency of solar energy utilization. In order to improve the utilization of sunlight, researchers have developed a variety of artificial light-harvesting system to simulate photosynthesis in nature. Here, we report a supramolecular self-assembly artificial light-harvesting system in aqueous solution.  We modified ß-CD with the donor molecule naphthalimide and adamantane with the tetraphenylethylene molecule which has aggregation-induced emission effects (AIE). By using fluorescent molecules with AIE, the self-quenching effect caused by aggregation in aqueous solution can be effectively avoided. Due to the host-guest interaction of ß-CD and adamantane, nanoparticles with stable structure and uniform size can be spontaneously assembled in water. Because of the close distance and strong spectral overlap between naphthalimide and tetraphenylethylene, Förster resonance energy transfer (FRET) was realized, and artificial light-harvesting system was successfully constructed in aqueous solution. The light-harvesting system has a high energy transfer efficiency (ΦET). Therefore, this study provides a new strategy for constructing artificial light-harvesting system.

20.
Angew Chem Int Ed Engl ; : e202409834, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022891

RESUMEN

While the supramolecular chemistry of simple anions is ubiquitous, the targeting and exploitation of their metal-containing relatives, the metalates, is less well understood. This mini review highlights the latest advances in this emergent area by discussing the supramolecular chemistry of metalates thematically, with a focus on the exploitation of metalates in a diversity of applications, including medical imaging and therapy, environmental remediation, molecular magnetism, catalysis, perovskite materials, and metal separations. The unifying features of these systems are identified with a view to allow the supramolecular chemist to target the unique material properties of the metalates, even in areas that are currently relatively immature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA