Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2410661, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358935

RESUMEN

4D printing of hydrogels is an emerging technology used to fabricate shape-morphing soft materials that are responsive to external stimuli for use in soft robotics and biomedical applications. Soft materials are technically challenging to process with current 4D printing methods, which limits the design and actuation potential of printed structures. Here, a simple multi-material 4D printing technique is developed that combines dynamic temperature-responsive granular hydrogel inks based on hyaluronic acid, whose actuation is modulated via poly(N-isopropylacrylamide) crosslinker design, with granular suspension bath printing that provides structural support during and after the printing process. Granular hydrogels are easily extruded upon jamming due to their shear-thinning properties and their porous structure enables rapid actuation kinetics (i.e., seconds). Granular suspension baths support responsive ink deposition into complex patterns due to shear-yielding to fabricate multi-material objects that can be post-crosslinked to obtain anisotropic shape transformations. Dynamic actuation is explored by varying printing patterns and bath shapes, achieving complex shape transformations such as 'S'-shaped and hemisphere structures. Furthermore, stepwise actuation is programmed into multi-material structures by using microgels with varied transition temperatures. Overall, this approach offers a simple method to fabricate programmable soft actuators with rapid kinetics and precise control over shape morphing.

2.
Adv Mater ; 36(34): e2309026, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38243918

RESUMEN

Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA