Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 57(Pt 3): 755-769, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846770

RESUMEN

This study reports the synthesis and crystal structure determination of a novel CrTe3 phase using various experimental and theoretical methods. The average stoichiometry and local phase separation of this quenched high-pressure phase were characterized by ex situ synchrotron powder X-ray diffraction and total scattering. Several structural models were obtained using simulated annealing, but all suffered from an imperfect Rietveld refinement, especially at higher diffraction angles. Finally, a novel stoichiometrically correct crystal structure model was proposed on the basis of electron diffraction data and refined against powder diffraction data using the Rietveld method. Scanning electron microscopy-energy-dispersive X-ray spectrometry (EDX) measurements verified the targeted 1:3 (Cr:Te) average stoichiometry for the starting compound and for the quenched high-pressure phase within experimental errors. Scanning transmission electron microscopy (STEM)-EDX was used to examine minute variations of the Cr-to-Te ratio at the nanoscale. Precession electron diffraction (PED) experiments were applied for the nanoscale structure analysis of the quenched high-pressure phase. The proposed monoclinic model from PED experiments provided an improved fit to the X-ray patterns, especially after introducing atomic anisotropic displacement parameters and partial occupancy of Cr atoms. Atomic resolution STEM and simulations were conducted to identify variations in the Cr-atom site-occupancy factor. No significant variations were observed experimentally for several zone axes. The magnetic properties of the novel CrTe3 phase were investigated through temperature- and field-dependent magnetization measurements. In order to understand these properties, auxiliary theoretical investigations have been performed by first-principles electronic structure calculations and Monte Carlo simulations. The obtained results allow the observed magnetization behavior to be interpreted as the consequence of competition between the applied magnetic field and the Cr-Cr exchange interactions, leading to a decrease of the magnetization towards T = 0 K typical for antiferromagnetic systems, as well as a field-induced enhanced magnetization around the critical temperature due to the high magnetic susceptibility in this region.

2.
J Colloid Interface Sci ; 669: 723-730, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38735254

RESUMEN

The simultaneous intercalation of protons and Zn2+ ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO2/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H+/Zn2+ co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA+ ions work as spacers to stabilize the layered structure of MnO2 cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from in operando pH measurements, in operando synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn2+ ions (which have a large ionic radius) into the MnO2 cathodes. This spacing also helps suppress the competing H+ intercalation and the formation of detrimental Zn4(OH)6SO4·5H2O, thereby enhancing the structural stability of MnO2. As a result, enhanced Zn2+ storage properties, including excellent capacity and long cycle stability, are achieved.

3.
Adv Mater ; 36(24): e2311559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520395

RESUMEN

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

4.
Materials (Basel) ; 16(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37834727

RESUMEN

Ni-Mn-based Heusler alloys are known to demonstrate magnetic shape memory and giant magnetocaloric effect (MCE). These effects depend on the phases, crystallographic and magnetic phase transitions, and the crystallographic texture characteristics. These structural characteristics, in turn, are a function of the processing parameters. In the current work, Ni55.5Mn18.8Ga24Si1.7 Heusler alloy was processed by melt-spinning under a helium atmosphere. This process results in a fine microstructure. The ribbon that was produced with a narrower nozzle width, faster wheel speed, and higher cast temperature, indicating a faster cooling rate, had double the magnetic entropy change close to room temperature. However, the other ribbon demonstrated a large entropy change over a broader temperature range, extending its usability. The effect of the melt-spinning process parameters on the developing microstructure, crystallographic structure and texture, transformation temperatures, and the magnetic entropy change were studied to explain the difference in magnetocaloric behavior.

5.
Mol Pharm ; 20(11): 5554-5562, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37850910

RESUMEN

The antiparasitic drug niclosamide (NCL) is notable for its ability to crystallize in multiple 1:1 channel solvate forms, none of which are isostructural. Here, using a combination of time-resolved synchrotron powder X-ray diffraction and thermogravimetry, the process-induced desolvation mechanisms of methanol and acetonitrile solvates are investigated. Structural changes in both solvates follow a complicated molecular-level trajectory characterized by a sudden shift in lattice parameters several degrees below the temperature where the desolvated phase first appears. Model fitting of kinetic data obtained under isothermal heating conditions suggests that the desolvation is rate-limited by the nucleation of the solvent-free product. The desolvation pathways identified in these systems stand in contrast to previous investigations of the NCL channel hydrate, where water loss by diffusion initially yields an anhydrous isomorph that converts to the thermodynamic polymorph at significantly higher temperatures. Taking the view that each solvate lattice is a unique "pre-organized" precursor, a comparison of the pathways from different starting topologies to the same final product provides the opportunity to reevaluate assumptions of how various factors (e.g., solvent binding strength, density) influence solid-state desolvation processes.


Asunto(s)
Niclosamida , Agua , Niclosamida/química , Difracción de Rayos X , Solventes/química , Agua/química , Metanol
6.
Nanomaterials (Basel) ; 13(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513148

RESUMEN

Neuromorphic computing, reconfigurable optical metamaterials that are operational over a wide spectral range, holographic and nonvolatile displays of extremely high resolution, integrated smart photonics, and many other applications need next-generation phase-change materials (PCMs) with better energy efficiency and wider temperature and spectral ranges to increase reliability compared to current flagship PCMs, such as Ge2Sb2Te5 or doped Sb2Te. Gallium tellurides are favorable compounds to achieve the necessary requirements because of their higher melting and crystallization temperatures, combined with low switching power and fast switching rate. Ga2Te3 and non-stoichiometric alloys appear to be atypical PCMs; they are characterized by regular tetrahedral structures and the absence of metavalent bonding. The sp3 gallium hybridization in cubic and amorphous Ga2Te3 is also different from conventional p-bonding in flagship PCMs, raising questions about its phase-change mechanism. Furthermore, gallium tellurides exhibit a number of unexpected and highly unusual phenomena, such as nanotectonic compression and viscosity anomalies just above their melting points. Using high-energy X-ray diffraction, supported by first-principles simulations, we will elucidate the atomic structure of amorphous Ga2Te5 PLD films, compare it with the crystal structure of tetragonal gallium pentatelluride, and investigate the electrical, optical, and thermal properties of these two materials to assess their potential for memory applications, among others.

7.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 469-473, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37151825

RESUMEN

The resurgence of inter-est in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexa-gonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.

8.
Adv Sci (Weinh) ; 10(11): e2207283, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36794292

RESUMEN

Polyanion-type phosphate materials, such as M3 V2 (PO4 )3 (M = Li/Na/K), are promising as insertion-type negative electrodes for monovalent-ion batteries including Li/Na/K-ion batteries (lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs)) with fast charging/discharging and distinct redox peaks. However, it remains a great challenge to understand the reaction mechanism of materials upon monovalent-ion insertion. Here, triclinic Mg3 V4 (PO4 )6 /carbon composite (MgVP/C) with high thermal stability is synthesized via ball-milling and carbon-thermal reduction method and applied as a pseudocapacitive negative electrode in LIBs, SIBs, and PIBs. In operando and ex situ studies demonstrate the guest ion-dependent reaction mechanisms of MgVP/C upon monovalent-ion storage due to different sizes. MgVP/C undergoes an indirect conversion reaction to form Mg0 , V0 , and Li3 PO4 in LIBs, while in SIBs/PIBs the material only experiences a solid solution with the reduction of V3+ to V2+ . Moreover, in LIBs, MgVP/C delivers initial lithiation/delithiation capacities of 961/607 mAh g-1 (30/19 Li+ ions) for the first cycle, despite its low initial Coulombic efficiency, fast capacity decay for the first 200 cycles, and limited reversible insertion/deinsertion of 2 Na+ /K+ ions in SIBs/PIBs. This work reveals a new pseudocapacitive material and provides an advanced understanding of polyanion phosphate negative material for monovalent-ion batteries with guest ion-dependent energy storage mechanisms.

9.
J Appl Crystallogr ; 55(Pt 5): 1164-1172, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249493

RESUMEN

The nuclear and magnetic structures of Mn3Fe2Si3 are investigated in the temperature range from 20 to 300 K. The magnetic properties of Mn3Fe2Si3 were measured on a single crystal. The compound undergoes a paramagnetic to antiferromagnetic transition at T N2 ≃ 120 K and an antiferromagnetic to antiferromagnetic transition at T N1 ≃ 69 K. A similar sequence of magnetic phase transitions is found for the parent compound Mn5Si3 upon temperature variation, but the field-driven transition observed in Mn5Si3 is not found in Mn3Fe2Si3, resulting in a strongly reduced magnetocaloric effect. Structurally, the hexagonal symmetry found for both compounds under ambient conditions is preserved in Mn3Fe2Si3 through both magnetic transitions, indicating that the crystal structure is only weakly affected by the magnetic phase transition, in contrast to Mn5Si3 where both transitions distort the nuclear structure. Both compounds feature a collinear high-temperature magnetic phase AF2 and transfer into a non-collinear phase AF1 at low temperature. While one of the distinct crystallographic sites remains disordered in the AF2 phase in the parent compound, the magnetic structure in the AF2 phase involves all magnetic atoms in Mn3Fe2Si3. These observations imply that the distinct sites occupied by the magnetic atoms play an important role in the magnetocaloric behaviour of the family.

10.
Sci Technol Adv Mater ; 23(1): 633-641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212679

RESUMEN

Structural martensitic transformations enable various applications, which range from high stroke actuation and sensing to energy efficient magnetocaloric refrigeration and thermomagnetic energy harvesting. All these emerging applications benefit from a fast transformation, but up to now their speed limit has not been explored. Here, we demonstrate that a thermoelastic martensite to austenite transformation can be completed within 10 ns. We heat epitaxial Ni-Mn-Ga films with a nanosecond laser pulse and use synchrotron diffraction to probe the influence of initial temperature and overheating on transformation rate and ratio. We demonstrate that an increase in thermal energy drives this transformation faster. Though the observed speed limit of 2.5 × 1027 (Js)1 per unit cell leaves plenty of room for further acceleration of applications, our analysis reveals that the practical limit will be the energy required for switching. Thus, martensitic transformations obey similar speed limits as in microelectronics, as expressed by the Margolus - Levitin theorem.

11.
Nanomaterials (Basel) ; 12(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35564274

RESUMEN

The crystal structure and magnetic state of the (1 − x)BiFeO3-(x)BiMnO3 solid solution has been analyzed by X-ray diffraction using lab-based and synchrotron radiation facilities, magnetization measurements, differential thermal analysis, and differential scanning calorimetry. Dopant concentration increases lead to the room-temperature structural transitions from the polar-active rhombohedral phase to the antipolar orthorhombic phase, and then to the monoclinic phase accompanied by the formation of two-phase regions consisting of the adjacent structural phases in the concentration ranges 0.25 < x1 < 0.30 and 0.50 ≤ x2 < 0.65, respectively. The accompanied changes in the magnetic structure refer to the magnetic transitions from the modulated antiferromagnetic structure to the non-colinear antiferromagnetic structure, and then to the orbitally ordered ferromagnetic structure. The compounds with a two-phase structural state at room temperature are characterized by irreversible temperature-driven structural transitions, which favor the stabilization of high-temperature structural phases. The magnetic structure of the compounds also exhibits an irreversible temperature-induced transition, resulting in an increase of the contribution from the magnetic phase associated with the high-temperature structural phase. The relationship between the structural parameters and the magnetic state of the compounds with a metastable structure is studied and discussed depending on the chemical composition and heating prehistory.

12.
ACS Appl Mater Interfaces ; 14(11): 13528-13538, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35262350

RESUMEN

Ternary/polynary perovskite solid solutions based on binary systems are well-known for their high piezoelectric performance. In this work, a series of Pb(Ni1/3Nb2/3)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 compositions with the particularly high piezoelectric coefficient of d33* > 1000 pm/V and d33 > 700 pC/N have been developed. The optimal performance was achieved in the 0.52PNN-0.14PSN-0.34PT composition (d33* = 1120 pm/V, d33 = 804 pC/N, and Tm = 109 °C). The high piezoelectric performance of this system is reported and is superior to those of most lead-based ternary/polynary ceramics. By a combination of in situ high-energy synchrotron diffraction with transmission electron microscopy (TEM), the origin of the high piezoelectric response has been unambiguously revealed. Upon application of an external electric field, synchrotron diffraction profiles show no splitting but prominent shifting, indicating that the large intrinsic lattice strain arising from the reduced crystal anisotropy and facilitated polarization variation is associated with the high piezoelectric response. Furthermore, microscopic studies by TEM highlight a heterogeneous ferroelectric domain configuration generated by a small local structural distortion, which is also beneficial for the high piezoelectric performance in the proposed ternary piezoelectric systems. The design process of ternary perovskite solid solutions with a wide morphotropic phase boundary region and small structural distortion may be enlightening for the exploration of other high-performance polynary piezoelectrics.

13.
ACS Appl Mater Interfaces ; 13(47): 56366-56374, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784712

RESUMEN

Ti2Nb2O9 with a tunnel-type structure is considered as a perspective negative electrode material for Li-ion batteries (LIBs) with theoretical capacity of 252 mAh g-1 corresponding to one-electron reduction/oxidation of Ti and Nb, but only ≈160 mAh g-1 has been observed practically. In this work, highly reversible capacity of 200 mAh g-1 with the average (de)lithiation potential of 1.5 V vs Li/Li+ is achieved for Ti2Nb2O9 with pseudo-2D layered morphology obtained via thermal decomposition of the NH4TiNbO5 intermediate prepared by K+→ H+→ NH4+ cation exchange from KTiNbO5. Using operando synchrotron powder X-ray diffraction (SXPD), single-phase (de)lithiation mechanism with 4.8% unit cell volume change is observed. Operando X-ray absorption near-edge structure (XANES) experiment revealed simultaneous Ti4+/Ti3+ and Nb5+/Nb4+ reduction/oxidation within the whole voltage range. Li+ migration barriers for Ti2Nb2O9 along [010] direction derived from density functional theory (DFT) calculations are within the 0.15-0.4 eV range depending on the Li content that is reflected in excellent C-rate capacity retention. Ti2Nb2O9 synthesized via the ion-exchange route appears as a strong contender to widely commercialized Ti-based negative electrode material Li4Ti5O12 in the next generation of high-performance LIBs.

14.
IUCrJ ; 8(Pt 5): 833-841, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34584744

RESUMEN

In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and . Experimental d-orbital populations support this interpretation, showing in addition that the metal-ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.

15.
Materials (Basel) ; 14(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206514

RESUMEN

Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from these microbending fracture tests in the scanning electron microscope (SEM) were contrasted to and the results validated by depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such a multi-method assessment of the interface decohesion resistance with respect to the interface morphology provides a reliable investigation strategy for further improvement of the interface morphology.

16.
J Synchrotron Radiat ; 28(Pt 3): 790-803, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949987

RESUMEN

The widespread use and development of inertia friction welding is currently restricted by an incomplete understanding of the deformation mechanisms and microstructure evolution during the process. Understanding phase transformations and lattice strains during inertia friction welding is essential for the development of robust numerical models capable of determining optimized process parameters and reducing the requirement for costly experimental trials. A unique compact rig has been designed and used in-situ with a high-speed synchrotron X-ray diffraction instrument to investigate the microstructure evolution during inertia friction welding of a high-carbon steel (BS1407). At the contact interface, the transformation from ferrite to austenite was captured in great detail, allowing for analysis of the phase fractions during the process. Measurement of the thermal response of the weld reveals that the transformation to austenite occurs 230 °C below the equilibrium start temperature of 725 °C. It is concluded that the localization of large strains around the contact interface produced as the specimens deform assists this non-equilibrium phase transformation.

17.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316343

RESUMEN

The determination of reversible phase transitions in the perovskite-type thermoelectric oxide Eu0.8Ca0.2TiO3-δ is fundamental, since structural changes largely affect the thermal and electrical transport properties. The phase transitions were characterized by heat capacity measurements, Rietveld refinements, and pair distribution function (PDF) analysis of the diffraction data to achieve information on the phase transition temperatures and order as well as structural changes on the local level and the long range. On the long-range scale, Eu0.8Ca0.2TiO3-δ showed a phase transition sequence during heating from cubic at 100 < T < 592 K to tetragonal and finally back to cubic at T > 846 K. The phase transition at T = 592 K (diffraction)/606 K (thermal analysis) was reversible with a very small thermal hysteresis of about 2 K. The local structure at 100 K was composed of a complex nanodomain arrangement of Amm2- and Pbnm-like local structures with different coherence lengths. Since in Eu0.8Ca0.2TiO3-δ the amount of Pbnm domains was too small to percolate, the competition of ferroelectrically distorted octahedra (Amm2 as in BaTiO3) and rigid, tilted octahedra (Pbnm as in CaTiO3) resulted in a cubic long-range structure at low temperatures.

18.
ACS Appl Mater Interfaces ; 12(18): 21045-21056, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272014

RESUMEN

Ga alloys have been attracting significant renewed attention for low-temperature bonding applications in electronic packaging. This study systematically investigates the interfacial reaction between liquid Ga and Cu-10Ni substrates at 30 °C. In addition to CuGa2 formed from binary Ga/Cu couples, a layer of nanocrystalline Ga5Ni and CuGa2 formed between the Cu-10Ni substrate and the blocklike micrometer scale CuGa2 layer. The growth of interfacial intermetallics (IMCs) on the Cu-10Ni substrate was substantially accelerated compared to the IMC growth in binary Ga/Cu couples. Reaction kinetics study shows the IMC growth from the Cu-10Ni substrate was controlled by reaction and volume diffusion, while the IMC growth from the Cu substrate was controlled by volume diffusion. It is also found that the presence of Ni within the CuGa2 phase resulted in improved thermal stability and a smaller coefficient of thermal expansion during heating from 25 to 300 °C, using synchrotron XRD analysis. There was least thermal expansion anisotropy among most of the IMCs that form in conventional Sn-based solder alloys, including Cu6Sn5 and so forth. It is concluded that using a Cu-10Ni substrate as opposed to a Cu substrate could achieve sufficient metallurgical bonding within shorter processing time. The results have implications for broadening the application temperatures when using Ga as a low-temperature joining material.

19.
J Mech Behav Biomed Mater ; 90: 523-529, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30458336

RESUMEN

In this study, we examined the effect of pre-existing dislocation structures in a face-centered cubic γ-phase on strain-induced martensitic transformation (SIMT) to produce a hexagonal close-packed ε-phase in a hot-rolled biomedical Co-Cr-Mo alloy. The as-rolled microstructure was characterized by numerous dislocations as well as stacking faults and deformation twins. SIMT occurred just after macroscopic yielding in tensile deformation. Using synchrotron X-ray diffraction line-profile analysis, we successfully captured the nucleation of ε-martensite during tensile deformation in terms of structural evolution in the surrounding γ-matrix: many dislocations that were introduced into the γ-matrix during the hot-rolling process were consumed to produce ε-martensite, together with strong interactions between dislocations in the γ-matrix. As a result, the SIMT behavior during tensile deformation was accelerated through the consumption of these lattice defects, and the nucleation sites for the SIMT ε-phase transformed into intergranular regions upon hot rolling. Consequently, the hot-rolled Co-Cr-Mo alloy simultaneously exhibited an enhanced strain hardening and a high yield strength. The results of this study suggest the possibility of a novel approach for controlling the γ → ε SIMT behavior, and ultimately, the performance of the alloy in service by manipulating the initial dislocation structures.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Cromo/química , Cobalto/química , Aleaciones Dentales/química , Molibdeno/química , Estrés Mecánico , Ensayo de Materiales , Resistencia a la Tracción
20.
ACS Appl Mater Interfaces ; 10(8): 7208-7213, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29457889

RESUMEN

Rapid preparation utilizing assisted microwave heating permits significantly shorter preparation times for magnetocaloric compounds in the (Mn,Fe)2(P,Si) family, specifically samples of (Mn,Fe)2-δP0.5Si0.5 with starting compositions of δ = 0, 0.06, and 0.12. To fully understand the effects of processing and composition changes on structure and properties, these materials are characterized using synchrotron powder diffraction, neutron powder diffraction, electron microprobe analysis (EMPA), X-ray fluorescence (XRF), and magnetic measurements. The diffraction analysis reveals that increasing δ results in decreasing amounts of the common Heusler (Mn,Fe)3Si secondary phase. EMPA shows (Mn,Fe)2(P,Si) in all three samples to be Mn and P rich, whereas XRF demonstrates that the bulk material is Mn rich yet P deficient. Increasing δ brings the Mn/Fe and P/Si ratios closer to their starting values. Measurements of magnetic properties show an increase in saturation magnetization and ordering temperature with increasing δ, consistent with the increase in Fe and Si contents. Increasing δ also results in a decrease in thermal hysteresis and an increase in magnetic entropy change, the latter reaching values close to what have been previously reported on samples that take much longer to prepare.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA