Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 33: 941-959, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37701067

RESUMEN

The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.

2.
JHEP Rep ; 4(2): 100413, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35036887

RESUMEN

Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver tumours, whose incidence and associated mortality have increased over recent decades. Liver cancer is often diagnosed late when curative treatments are no longer an option. Characterising new molecular determinants of liver carcinogenesis is crucial for the development of innovative treatments and clinically relevant biomarkers. Recently, circular RNAs (circRNAs) emerged as promising regulatory molecules involved in cancer onset and progression. Mechanistically, circRNAs are mainly known for their ability to sponge and regulate the activity of microRNAs and RNA-binding proteins, although other functions are emerging (e.g. transcriptional and post-transcriptional regulation, protein scaffolding). In liver cancer, circRNAs have been shown to regulate tumour cell proliferation, migration, invasion and cell death resistance. Their roles in regulating angiogenesis, genome instability, immune surveillance and metabolic switching are emerging. Importantly, circRNAs are detected in body fluids. Due to their circular structure, circRNAs are often more stable than mRNAs or miRNAs and could therefore serve as promising biomarkers - quantifiable with high specificity and sensitivity through minimally invasive methods. This review focuses on the role and the clinical relevance of circRNAs in liver cancer, including the development of innovative biomarkers and therapeutic strategies.

3.
Neuron ; 92(6): 1337-1351, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27939580

RESUMEN

A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Conducta Animal , Encéfalo/crecimiento & desarrollo , Dendritas , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA