Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.005
Filtrar
1.
J Environ Sci (China) ; 147: 550-560, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003070

RESUMEN

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 104 ng/m3), total suspended particulate (TSP) (mean= 4.33 × 103 ng/m3) and soil (mean= 4.37 × 103 ng/g) in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility, surrounding residential areas and reference areas, indicating that petroleum refining processes would lead apparent derivation of PAHs. Especially, compared with those in residential and reference areas, gas samples in the petrochemical areas had higher ∑NPAH/∑PAHs (mean=2.18), but lower ∑Cl-PAH/∑PAHs (mean=1.43 × 10-1) and ∑Br-PAH/∑PAHs ratios (mean=7.49 × 10-2), indicating the richer nitrification of PAHs than chlorination during petrochemical process. The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure, and the ILCR (1.04 × 10-4) for petrochemical workers was considered to be potential high risk. Furthermore, one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area, and another 35 PAHs were found, including alkyl-PAHs, phenyl-PAHs and other species, indicating that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.


Asunto(s)
Monitoreo del Ambiente , Petróleo , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , China , Petróleo/análisis , Humanos , Industria del Petróleo y Gas , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo
2.
Int Immunopharmacol ; 140: 112813, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088916

RESUMEN

Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.

3.
Int Immunopharmacol ; 140: 112821, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088919

RESUMEN

Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.

4.
Cell Commun Signal ; 22(1): 386, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090602

RESUMEN

BACKGROUND: T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS: GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS: We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS: This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.


Asunto(s)
Queratinocitos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Infiltración Neutrófila , Psoriasis , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Imiquimod , Queratinocitos/patología , Queratinocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Neutrófilos/patología , Psoriasis/patología , Psoriasis/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Regulación hacia Arriba , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
5.
Oncol Lett ; 28(3): 441, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099583

RESUMEN

Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39111771

RESUMEN

Photothermal therapy (PTT) is a method for eradicating tumor tissues through the use of photothermal materials and photosensitizing agents that absorb light energy from laser sources and convert it into heat, which selectively targets and destroys cancer cells while sparing healthy tissue. MXenes have been intensively investigated as photosensitizing agents for PTT. However, achieving the selectivity of MXenes to the tumor cells remains a challenge. Specific antibodies (Ab) against tumor antigens can achieve homing of the photosensitizing agents toward tumor cells, but their immobilization on MXene received little attention. Here, we offer a strategy for the selective ablation of melanoma cells using MXene-polydopamine-antiCEACAM1 Ab complexes. We coated Ti3C2Tx MXene with polydopamine (PDA), a natural compound that attaches Ab to the MXene surface, followed by conjugation with an anti-CEACAM1 Ab. Our experiments confirm the biocompatibility of the Ti3C2Tx-PDA and Ti3C2Tx-PDA-antiCEACAM1 Ab complexes across various cell types. We also established a protocol for the selective ablation of CEACAM1-positive melanoma cells using near-infrared irradiation. The obtained complexes exhibit high selectivity and efficiency in targeting and eliminating CEACAM1-positive melanoma cells while sparing CEACAM1-negative cells. These results demonstrate the potential of MXene-PDA-Ab complexes for cancer therapy. They underline the critical role of targeted therapies in oncology, offering a promising avenue for the precise and safe treatment of melanoma and possibly other cancers characterized by specific biomarkers. Future research will aim to refine these complexes for clinical use, paving the way for new strategies for cancer treatment.

7.
Ann Oncol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39112111

RESUMEN

BACKGROUND: Genomic tumour profiling has a crucial role in the management of patients with solid cancers, as it helps selecting and prioritising therapeutic interventions based on prognostic and predictive biomarkers, as well as identifying markers of hereditary cancers. Harmonised approaches to interpret the results of genomic testing are needed to support physicians in their decision making, prevent inequalities in precision medicine and maximise patient benefit from available cancer management options. METHODS: The European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group assembled a group of international experts to propose recommendations for preparing clinical genomic reports for solid cancers. These recommendations aim to foster best practices in integrating genomic testing within clinical settings. After review of available evidence, several rounds of surveys and focused discussions were conducted to reach consensus on the recommendation statements. Only consensus recommendations were reported. Recommendation statements were graded in two tiers based on their clinical importance: level A (required to maintain common standards in reporting) and level B (optional but necessary to achieve ideal practice). RESULTS: Genomics reports should present key information in a front page(s) followed by supplementary information in one or more appendices. Reports should be structured into sections: (i) patient and sample details; (ii) assay and data analysis characteristics; (iii) sample-specific assay performance and quality control; (iv) genomic alterations and their functional annotation; (v) clinical actionability assessment and matching to potential therapy indications; and (vi) summary of the main findings. Specific recommendations to prepare each of these sections are made. CONCLUSIONS: We present a set of recommendations aimed at structuring genomics reports to enhance physician comprehension of genomic profiling results for solid cancers. Communication between ordering physicians and professionals reporting genomic data is key to minimise uncertainties and to optimise the impact of genomic tests in patient care.

8.
Mol Ther ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39113357

RESUMEN

One of the biggest challenges for in vivo gene therapy are vectors mediating highly selective gene transfer into a defined population of therapy-relevant cells. Here we present DARPin-targeted AAVs (DART-AAVs) displaying DARPins specific for human and murine CD8. Insertion of DARPins into the GH2/GH3 loop of the capsid protein 1 (VP1) of AAV2 and AAV6 resulted in high selectivity for CD8-positive T cells with unimpaired gene delivery activity. Remarkably, the capsid core structure was unaltered with protruding DARPins detectable. In complex primary cell mixtures, including donor blood or systemic injections into mice, the CD8-targeted AAVs were by far superior to unmodified AAV2 and AAV6 in terms of selectivity, target cell viability and gene transfer rates. In vivo, up to 80% of activated CD8+ T cells were hit upon a single vector injection into conditioned humanized or immunocompetent mice. While gene transfer rates decreased significantly under non-activated conditions, genomic modification selectively in CD8+ T cells was still detectable upon Cre delivery into indicator mice. In both mouse models, selectivity for CD8+ T cells was close to absolute with exceptional detargeting from liver. The CD8-AAVs described here expand strategies for immunological research and in vivo gene therapy options.

9.
Mol Ther ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39113358

RESUMEN

Liver cancer is one of the most prevalent malignant tumors worldwide. According to the staging criteria of Barcelona Clinic Liver Cancer, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage, thereby, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small molecule-based targeted therapies are highly recommended (fist-line: Sorafenib and Lenvatinib; second-line: Regorafenib and Cabozantinib) by current clinical guidelines of American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting the clues for novel techniques in liver cancer treatment.

10.
Physiol Rev ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115424

RESUMEN

3', 5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signalling pathway, how they organized are inside the intracellular space and how they achieve exquisite regulation of signalling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalised cAMP signaling and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.

11.
Support Care Cancer ; 32(9): 580, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115725

RESUMEN

BACKGROUND: This study aims to identify symptom clusters in patients with intermediate and advanced liver cancer receiving targeted immunotherapy, focusing on core and bridge symptoms to establish a foundation for precise symptom management. METHODS: This study used a cross-sectional survey and utilized convenience sampling from May 2023 to January 2024 at a third-class hospital in Shanghai, China. The severity of symptoms in liver cancer patients during treatment was evaluated using the Memorial Symptom Assessment Scale. Network analysis was employed to depict the interrelation of symptom clusters and identify core and bridge symptoms. RESULTS: The symptoms were classified by severity into five clusters: oral, gastrointestinal, fatigue-related, body image, and pain-sleep. Within the symptom network, the core symptoms were pain, "I don't look like myself," and nausea, while the critical bridge symptoms included pain, itching, and feeling bloated. The strongest connections were observed between nausea and vomiting, followed by taste changes and dry mouth, as well as weight loss and "I don't look like myself." CONCLUSION: In patients receiving targeted immunotherapy for intermediate and advanced liver cancer, multiple symptoms can emerge simultaneously, forming interconnected clusters. By identifying and intervening in core and bridge symptoms, personalized management strategies can be developed to relieve other symptoms and disrupt connections between symptom clusters, thereby enhancing symptom management efficacy. This study has significant clinical and research implications, offering new insights to improve patients' quality of life and treatment outcomes.


Asunto(s)
Inmunoterapia , Neoplasias Hepáticas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Estudios Transversales , Neoplasias Hepáticas/terapia , Inmunoterapia/métodos , China , Anciano , Adulto , Índice de Severidad de la Enfermedad , Calidad de Vida , Encuestas y Cuestionarios , Evaluación de Síntomas/métodos
12.
Heliyon ; 10(14): e34211, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100472

RESUMEN

Cancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.2 to 7.4. The extracellular pH values of tumors are characterized by a shift to a more acidic region in the range of 5.6-7.0 and represent a crucial target for enhancing nanoparticle delivery to cancer cells. Here we show the method of non-active protein incorporation into the surface of HER2-targeted nanoparticles to achieve optimal cellular uptake within the pH range of the tumor microenvironment. The method efficacy was confirmed in vitro and in vivo showing the maximum binding of nanoparticles to cells at a pH value 6.4. Namely, fluorescent magnetic nanoparticles, modified with HER2-recognising affibody ZHER2:342, with proven specificity in terms of HER2 recognition (with 62-fold higher cellular uptake compared to control nanoparticles) were designed for targeting cancer cells at slightly acidic pH values. The stabilizing protein, namely, bovine serum albumin, one of the major blood components with widespread availability and biocompatibility, was used for the decoration of the nanoparticle surface to alter the pH response of the targeting magnetic conjugates. The optimally designed nanoparticles showed a bell-shaped dependency of interaction with cancer cells in the pH range of 5.6-8.0 with maximum cellular uptake at pH value 6.4 close to that of the tumor microenvironment. In vivo experiments revealed that after i.v. administration, BSA-decorated nanoparticles exhibited 2 times higher accumulation in tumors compared to magnetic nanoparticles modified with affibody only. Thus, we demonstrated a valid method for enhancing the specificity of targeted nanoparticle delivery to cancer cells without changing the functional components of nanoparticles.

13.
Front Pharmacol ; 15: 1451517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101150

RESUMEN

Nitroreductase activable agents offer a personalized and targeted approach to cancer theranostics by selectively activating prodrugs within the tumor microenvironment. These agents enable non-invasive tumor imaging, image-guided drug delivery, and real-time treatment monitoring. By leveraging the enzymatic action of tumor-specific nitroreductase enzymes, cytotoxic drugs are delivered directly to cancer cells while minimizing systemic toxicity. This review highlights the key features, mechanisms of action, diagnostic applications, therapeutic potentials, and future directions of nitroreductase activable agents for tumor theranostics. Integration with imaging modalities, advanced drug delivery systems, immunotherapy combinations, and theranostic biomarkers shows promise for optimizing treatment outcomes and improving patient survival in oncology. Continued research and innovation in this field are crucial for advancing novel theranostic strategies and enhancing patient care. Nitroreductase activable agents represent a promising avenue for personalized cancer therapy and have the potential to transform cancer diagnosis and treatment approaches.

14.
Oncologist ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102756

RESUMEN

BACKGROUND: Biliary tract cancer (BTC) is a highly malignant tumor, with limited therapy regimens and short response duration. In this study, we aim to assess the efficacy and safety of the combination of camrelizumab, apatinib, and capecitabine as the first- or second-line treatment in patients with advanced BTC. METHODS: In this phase 2, nonrandomized, prospective study, eligible patients received camrelizumab (200 mg, d1, Q3W), apatinib (250 mg, qd, d1-d21, Q3W), and capecitabine (1000 mg/m², bid, d1-d14, Q3W) until trial discontinued. The primary endpoint was the objective response rate (ORR). The secondary endpoints were disease control rate, progression-free survival (PFS), overall survival (OS), and safety. RESULTS: From July 2019 to April 2023, we enrolled a total of 28 patients, of whom 14 patients were in the first-line treatment setting and 14 patients were in the second-line setting. At the data cutoff (April 30, 2023), the median follow-up duration was 18.03 months. Eight of 28 patients reached objective response (ORR: 28.57%), with an ORR of 50% and 7.1% for first-line and second-line treatment patients (P = .033). The median PFS was 6.30 months and the median OS was 12.80 months. Grade 3 or 4 adverse events (AEs) occurred in 9 (32.14%) patients, including elevated transaminase, thrombocytopenia, etc. No serious treatment-related AEs or treatment-related deaths occurred. CONCLUSIONS: In this trial, the combination of camrelizumab, apatinib, and capecitabine showed promising antitumor activity and manageable toxicity in patients with advanced BTC, especially in the first-line setting. CLINICAL TRIAL REGISTRATION: NCT04720131.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39102849

RESUMEN

BACKGROUND: Being amongst the leading factors of death and distress, chronic kidney disease (CKD) has affected around 850 million people globally. The Wnt/ß-catenin axis is vital for maintaining kidney homeostasis, from nephron generation to overall management. The ß-catenin growth factor is typically not expressed in the adult kidney; however, its expression is found to increase under stress and injury conditions. It is categorised as canonical and non-canonical based on ß-catenin availability, which mounts promising targets for ameliorating CKD. Hence, modulation of the Wnt/ß-catenin signalling for CKD management is of utmost relevance. OBJECTIVES: The primary aim of this review is to highlight the significance of targeting Wnt/ß-catenin signalling for CKD management. METHODS: The literature review regarding the role of Wnt/ß-catenin signalling and therapies modulating it in CKD was conducted using PubMed, Scopus, Science Direct and Google Scholar. RESULTS: The current review summarises the pharmacological therapies modulating the Wnt/ß-catenin axis in CKD, building upon promising preclinical studies to establish a foundation for clinical studies in the future. CONCLUSION: Wnt/ß-catenin signalling is the evolution's most conserved pathway, which plays a pivotal role in CKD progression. Therapies modulating Wnt/ß-catenin signalling have emerged as effective means for alleviating CKD.

16.
J Control Release ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103056

RESUMEN

For medical emergencies, such as acute ischemic stroke, rapid drug delivery to the target site is essential. For many small molecule drugs, this goal is unachievable due to poor solubility that prevents intravenous administration, and less obviously, by extensive partitioning to plasma proteins and red blood cells (RBCs), which greatly slows delivery to the target. Here we study these effects and how they can be solved by loading into nanoscale drug carriers. We focus on fingolimod, a small molecule drug that is FDA-approved for treatment of multiple sclerosis, which has also shown promise in the treatment of stroke. Unfortunately, fingolimod has poor solubility and very extensive partitioning to plasma proteins and RBCs (in whole blood, 86% partitions to RBCs, 13.96% to plasma proteins, and 0.04% is free). We develop a liposomal formulation that slows the partitioning of fingolimod to RBCs and plasma proteins, enables intravenous delivery, and additionally prevents fingolimod toxicity to RBCs. The liposomal formulation nearly completely prevented fingolimod adsorption to plasma proteins (association with plasma proteins was 98.4 ±â€¯0.4% for the free drug vs. 5.6 ±â€¯0.4% for liposome-loaded drug). When incubated with whole blood in vitro, the liposomal formulation greatly slowed partitioning of fingolimod to RBCs and also eliminated deleterious effects of fingolimod on RBC rigidity, morphology, and hemolysis. In vivo, the liposomal formulation delayed fingolimod partitioning to RBCs for over 30 min, a critical time window for stroke. Fingolimod-loaded liposomes showed improved efficacy in a mouse model of post-stroke neuroinflammation, completely sealing the leaky blood-brain barrier (114 ±â€¯11.5% reduction in albumin leak into the brain for targeted liposomes vs. 38 ±â€¯16.5% reduction for free drug). This effect was only seen for liposomes modified with antibodies to enable targeted delivery to the site of action, and not in unmodified, long-circulating liposomes. Thus, loading fingolimod into liposomes prevented partitioning to RBCs and associated toxicities and enabled targeted delivery. This paradigm can be used for tuning the blood distribution of small molecule drugs for the treatment of acute illnesses requiring rapid pharmacologic intervention.

17.
Acta Pharmacol Sin ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103530

RESUMEN

Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39103593

RESUMEN

Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.

19.
Future Med Chem ; : 1-19, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105606

RESUMEN

Cardiovascular diseases (CVDs) and cancer are the top two leading causes of death globally. Vasodilators are commonly used to treat various CVDs. In cancer treatment, targeted anticancer agents have been developed to minimize side effects compared with traditional chemotherapy. Many hypertension patients are more prone to cancer, a case known as reverse cardio-oncology. This leads to the search for drugs with dual activity or repurposing strategy to discover new therapeutic uses for known drugs. Recently, medicinal chemists have shown great interest in synthesizing pyridazinone derivatives due to their significant biological activities in tackling these critical health challenges. This review will concentrate on pyridazin-3(2H)-one-containing compounds as vasodilators and anticancer agents, along with a brief overview of various methods for their synthesis.


[Box: see text].

20.
Mol Biol Rep ; 51(1): 886, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105958

RESUMEN

Cancer is considered the uncontrolled growth and spread of cells into neighboring tissues, a process governed at the molecular level by many different factors, including abnormalities in the protein family's death-associated kinase (DAPK). DAPK2 is a member of the DAPK protein family, which plays essential roles in several cellular processes. DAPK2 acts as a tumor suppressor, interacting with several proteins, such as TNF, IFN, etc. during apoptosis and autophagy. Expression of DAPK2 causes changes in the structure of the cell, ultimately leading to cell death by apoptosis. In this essay, studies are obtained from Scopus, PubMed, and the Web of Science. According to these investigations, DAPK2 activates autophagy by interacting with AMPK, mTORC1, and p73. Furthermore, DAPK2 induces apoptosis pathway via interacting with the p73 family and JNK. In general, due to the vital role of DAPK2 in cell physiology and its effect on various factors and signaling pathways, it can be a potent target in the treatment of various cancers, including gastric, ovarian, breast, and other prominent cancers.


Asunto(s)
Apoptosis , Autofagia , Proteínas Quinasas Asociadas a Muerte Celular , Neoplasias , Transducción de Señal , Humanos , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Apoptosis/genética , Autofagia/genética , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA