Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Biol Int ; 48(9): 1364-1377, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39007507

RESUMEN

We evaluated the influence of different media plus various concentrations of Glial cell line-derived neurotrophic factor (GDNF) during the in vitro culture (IVC) of testicular tissues from prepubertal collared peccary. Testes from 5 individuals were collected, fragmented and cultured for 28 days (34°C and 5% CO2). Culture media were Dulbecco's modified essential medium (DMEM) or stem cell serum free media (StemPro-34™ SFM), both supplemented with various concentrations of GDNF (0, 10, or 20 ng/mL). Fragments were cultured on the flat surface of 0.75% agarose gel and were evaluated every 7 days for fragment area, histomorphology, cellular viability, and proliferative activity. Data were expressed as mean ± standard error and analyzed by Kruskal-Wallis's and Tukey test. Fragments area decreased over the 28 days-culture, regardless of the treatment. For morphology, the StemPro-37 SFM medium plus 10 ng/mL GDNF provided higher scores at all time points in comparison to DMEM using any GDNF concentration (p < .05). After 28 days, similar cellular viability (~70%) was observed in all treatments (p > .05). For proliferating cell nuclear antigen assay, only DMEM plus 10 ng/mL GDNF improved (p < .05) cellular proliferation on Days 14 and 28. Looking at argyrophilic nucleolar organizing regions, after 28 days, there were no differences among treatments regarding cell proliferative capacity for both spermatogonia and Sertoli cells (p > .05). In summary, the DMEM and StemPro-34 SFM are adequate medium for IVC of prepubertal peccary testicular tissue. Supplementation with GDNF, especially at a 10 ng/mL concentration, appears to be essential for the maintenance of cell survival and proliferation.


Asunto(s)
Supervivencia Celular , Medios de Cultivo , Factor Neurotrófico Derivado de la Línea Celular Glial , Testículo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Testículo/citología , Testículo/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Medios de Cultivo/química , Proliferación Celular/efectos de los fármacos , Carica , Técnicas de Cultivo de Tejidos/métodos
2.
Heliyon ; 10(3): e25337, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356568

RESUMEN

Background: Paraquat (PQ) is a herbicide that is used globally in the agriculture sector to eradicate unwanted weeds, however it also induces significant damages in various organs of the body such as testes. Tectochrysin (TEC) is an important flavonoid that shows versatile therapeutic potentials. Currently, there is no established antidote to cure PQ-induced testicular toxicity. Objective: The present study was conducted to evaluate the ameliorative effects of TEC against PQ prompted testicular damage. Methods: Sprague-Dawley rats (n = 48) were used to conduct the trial. Rats were allocated in to 4 groups i.e., Control, PQ administrated group (5 mgkg-1), PQ + TEC co-administrated group (5 mgkg-1 + 2.5 mgkg-1) and TEC only administrated group (2.5 mgkg-1). The trial was conducted for 8 weeks. The activity of anti-oxidants and the levels of MDA and ROS were determined by spectrophotometric method. Steroidogenic enzymes as well as apoptotic markers expressions were evaluated by qRT-PCR. The level of hormones and inflammatory indices was quantified by enzyme-linked immunosorbent assay. Results: PQ exposure markedly (P < 0.05) disturbed the biochemical, spermatogenic and histological profile in the rats. Nevertheless, TEC treatment considerably (P < 0.05) increased CAT, GPx GSR and SOD activity, besides decreasing MDA and ROS contents. TEC administration also increased sperm viability, count and motility. 17ß-HSD, 3ß-HSD, StAR and Bcl-2 expressions were also increased following TEC administration. The supplementation of TEC substantially (P < 0.05) decreased Bax, Caspase-3 expression and the levels of inflammatory markers i.e., interleukin-1ß (IL-1ß), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity. Additionally, the levels of plasma testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were increased following TEC supplementation. Furthermore, TEC supplementation considerably decreased sperm structural abnormalities and histomorphological damages of the testes. The mitigative role of TEC might be due to its anti-inflammatory, anti-apoptotic, androgenic and anti-oxidant potentials. Conclusion: Taken together, it is concluded that TEC can be used as a potential candidate to treat testicular toxicity.

3.
Biomed Mater ; 19(2)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38324899

RESUMEN

Fertility preservation in prepubertal boys with cancer requires the cryopreservation of immature testicular tissues (ITTs) prior to gonadotoxic treatment. However, the limited number of germ cells in small human ITT biopsies necessitates the development of anin vitroculture system for germ cell expansion using frozen-thawed ITTs. Here, we generated testicular organoids for thein vitromaintenance and expansion of gonocytes from frozen-thawed two-week-old neonatal bovine ITTs. We investigated the effects of different cell-seeding densities, culture serums, seeding methods, and gonadotropin supplementations, on the maintenance and proliferation of enriched gonocytes. Our results demonstrated that enriched gonocytes and testicular cells from frozen-thawed neonatal ITTs could self-assemble into spheroid organoids in three days in an appropriate Matrigel-based culture environment. For the optimal formation of prepubertal testicular organoids, a seeding density of 1 × 106cells/well is recommended over other densities. This strategy results in organoids with a mean diameter of 60.53 ± 12.12 µm; the mean number of organoids was 5.57 ± 1.60/105µm2on day 11. The viability of organoids was maintained at 79.75 ± 2.99% after being frozen and thawed. Supplementing the culture medium with glial cell-derived neurotrophic factor, fibroblast growth factor 2, and leukemia inhibitory factor, increased the proportion of KI67-positive proliferating cells in organoids, elevated the expression ofC-KITbut reduced the expression ofGFRα1at day 28 when compared to those without hormone supplements(p< 0.05). In addition, supplementing the culture medium with follicle-stimulating hormone and testosterone helped to maintain a significantly higher viability (p< 0.05) in ITT organoids at day 28. These organoids could be cryopreserved for storage and thawed as needed. The successful generation of ITT organoids provides a valuable tool for establishingin vitrospermatogenesis, propagating human germ cells, investigating testicular physiology and the origin of germ cell tumors, and testing the toxicity of new drugs in future clinical applications.


Asunto(s)
Criopreservación , Testículo , Masculino , Animales , Humanos , Bovinos , Testículo/metabolismo , Criopreservación/métodos , Congelación , Células Germinativas , Organoides
4.
Cryobiology ; 114: 104841, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38104854

RESUMEN

The cryopreservation of immature testicular tissue (ITT) prior to gonadotoxic therapy is crucial for fertility preservation in prepubertal boys with cancer. However, the optimal holding time between tissue collection and cryopreservation has yet to be elucidated. Using the bovine model, we investigated four holding times (1, 6, 24, and 48 h) for ITTs before cryopreservation. Biopsies from two-week-old calves were stored in transport medium and cryopreserved following a standard slow-freezing clinical protocol. Thawed samples were then assessed for viability, morphology, and gene expression by haematoxylin and eosin (H&E) staining, immunohistochemistry and real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Analysis failed to identify any significant changes in cell viability when compared between the different groups. Sertoli (Vimentin+) and proliferating cells (Ki67+) were well-preserved. The expression of genes related to germ cells, spermatogenesis (STRA8, PLZF, GFRα-1, C-KIT, THY1, UCHL-1, NANOG, OCT-4, CREM), and apoptosis (HSP70-2) remained stable over 48 h. However, seminiferous cord detachment increased significantly in the 48-h group (p < 0.05), with associated cord and SSC shrinkage. Collectively, our analyses indicate that bovine ITTs can be stored for up to 48 h prior to cryopreservation with no impact on cell viability and the expression levels of key genes. However, to preserve the morphology of frozen-thawed tissue, the ideal processing time would be within 24 h. Testicular tissues obtained from patients for fertility preservation often need to be transported over long distances to be cryopreserved in specialist centres. Our findings highlight the importance of determining optimal tissue transport times to ensure tissue quality in cryopreservation.


Asunto(s)
Preservación de la Fertilidad , Testículo , Masculino , Humanos , Animales , Bovinos , Criopreservación/métodos , Espermatogonias/metabolismo , Espermatogénesis , Preservación de la Fertilidad/métodos
5.
Life Sci ; 334: 122220, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898455

RESUMEN

AIMS: This study aimed to investigate the therapeutic influence of combination therapy with sericin and melatonin on attenuating diethylnitrosamine (DEN)-instigated testicular dysfunction in mice and defining the molecular mechanisms involved in orchestrating redox signaling pathways and restoring spermatogenesis and steroidogenesis. MATERIALS AND METHODS: Different groups of male Swiss albino mice were established and injected with respective drugs intraperitoneally. Semen analysis, hormonal assays, and oxidative stress biomarkers were evaluated. Additionally, melatonin and its receptors, WT1, SF-1, vimentin, Nrf2, and ANXA1 expressions were assessed. Histopathological and ultrastructural features of the testes were investigated by semithin, SEM, and TEM analyses. KEY FINDINGS: Exposure to DEN exhibited pathophysiological consequences, including a remarkable increase in lipid peroxidation associated with substantial diminutions in SOD, CAT, GPx, GSH, GSH:GSSG, and GST. Furthermore, it disrupted spermatozoa integrity, testosterone, FSH, LH, melatonin, and its receptors (MT1 and MT2) levels, implying spermatogenesis dysfunction. By contrast, treatment with sericin and melatonin significantly restored these disturbances. Interestingly, the combination therapy of sericin and melatonin noticeably augmented the Nrf2, WT1, and SF-1 expressions compared to DEN-treated mice, deciphering the amelioration perceived in antioxidant defense and spermatogenesis inside cells. Furthermore, immunohistochemical detection of ANXA1 alongside histopathological and ultrastructural analyses revealed evident maintenance of testicular structures without discernible inflammation or anomalies in mice administered with sericin and melatonin compared to the DEN-treated group. SIGNIFICANCE: Our findings highlighted that treatment with sericin and melatonin alleviated the testicular tissues in mice from oxidative stress and dysregulated spermatogenesis and steroidogenesis engendered by DEN.


Asunto(s)
Melatonina , Sericinas , Masculino , Ratones , Animales , Testículo/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sericinas/farmacología , Sericinas/metabolismo , Dietilnitrosamina , Estrés Oxidativo , Espermatogénesis , Antioxidantes/metabolismo , Transducción de Señal , Proteínas WT1/metabolismo
6.
Cells ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37759457

RESUMEN

In vitro spermatogenesis (IVS) has important applications including fertility preservation of prepubertal cancer patients; however, thus far, IVS has only been achieved using mouse models. To study the effects of growth factors on the maintenance of testicular tissue integrity, germ cell numbers, and potential induction of IVS using a porcine model, we cultured small testicular fragments (~2 mg) from 1-wk-old piglets under six different media conditions (DMEM + 10%KSR alone or supplemented with GDNF, bFGF, SCF, EGF, or a combination of all) for 8 weeks. Overall, tissues supplemented with GDNF and bFGF had the greatest seminiferous tubule integrity and least number of apoptotic cells. GDNF-supplemented tissues had the greatest number of gonocytes per tubule, followed by bFGF-supplemented tissues. There was evidence of gradual Sertoli cell maturation in all groups. Moreover, histological examination and the expression of c-KIT (a marker of differentiating spermatogonia and spermatocytes) and STRA8 (a marker of the pre/meiotic stage germ cells) confirmed the induction of IVS in all groups. However, GDNF- and bFGF-supplemented tissue cultures had greater numbers of seminiferous tubules with spermatocytes compared to other groups. In conclusion, overall, GDNF and bFGF supplementation better maintained the tissue integrity and gonocyte numbers and induced IVS in cultured testicular tissues.

7.
Theriogenology ; 210: 143-153, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499372

RESUMEN

Gonocytes play an important role in early development of spermatogonial stem cells and fertility preservation to acquire more high quality gonocytes in vitro for further germ cell-related research and applications, it is necessarily needed to enrich and in vitro propagate gonocytes from cryopreserved bovine testicular tissues. This study aimed to investigate the isolation, enrichment, and colony formation of gonocytes in vitro for germ cell expansion from cryopreserved neonatal bovine testicular tissues. The effects of several different in vitro culture conditions, including seeding density, temperature, serum replacement and extracellular matrices were investigated for the maintenance, proliferation and formation of gonocyte colonies in vitro. Frozen/thawed two-week-old neonatal bovine testicular tissues were digested and gonocytes were enriched using a Percoll density gradient. Cell viability was accessed by trypan blue staining and cell apoptosis was evaluated by TUNEL assays. Gonocytes were identified and confirmed by immunofluorescence with the PGP9.5 germ cell marker and the OCT4 pluripotency marker while Sertoli cells were stained with vimentin. We found that neonatal bovine gonocytes were efficiently enriched by a 30%-40% Percoll density gradient (p < 0.05). No significant differences were detected between neonatal bovine testicular cells cultured at 34 °C or 37 °C. The formation of gonocyte colonies was observed in culture medium supplemented with knockout serum replacement (KSR), but not fetal bovine serum (FBS), at a seeding density higher than 5.0 × 104 cells/well. A greater number of gonocyte colonies were observed in culture plates coated with laminin (38.00 ± 6.24/well) and Matrigel (38.67 ± 3.78/well) when compared to plates coated with collagen IV and fibronectin (p < 0.05). In conclusion, bovine neonatal gonocytes were able to be efficiently isolated, enriched and maintained in gonocyte colonies in vitro; the development of this protocol provides vital information for the clinical translation of this technology and the future restoration of human fertility.


Asunto(s)
Células de Sertoli , Testículo , Masculino , Animales , Humanos , Células Germinativas , Proliferación Celular , Espermatogonias
8.
Hum Exp Toxicol ; 42: 9603271231173378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122069

RESUMEN

The current research was performed to evaluate the ameliorative effects of Rhamnetin (RHM) on polystyrene microplastics (PS-MPs)-instigated testicular dysfunction in male albino rats. 48 albino rats were distributed in four groups, i.e., control, PS-MPs treated, PS-MPs + RHM co-treated and RHM only supplemented group. PS-MPs exposure considerably reduced anti-oxidant enzymes i.e., catalase (CAT), glutathione peroxidase (GSR), superoxide dismutase (SOD) and glutathione reductase (GPx) activities. Whereas, reactive oxygen species (ROS) level along with malondialdehyde (MDA) was considerably escalated in PS-MPs treated rats as well as a potential decline was observed in sperm progressive motility. Additionally, a substantial upsurge was noticed in the count of dead sperms, deformity in the tail, mid-piece and head of sperms in PS-MPs treated rats. PS-MPs exposure also decreased steroidogenic enzymes, 17ß-hydroxysteroid dehydrogenase (17ß-HSD), steroidogenic acute regulatory protein (StAR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) expressions. Moreover, the levels of inflammatory indices i.e., Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity were also increased in PS-MPs administrated group. Besides it increased the expression of apoptotic markers (Bax and caspase-3) expression. Whereas, anti-apoptotic marker i.e., Bcl-2 expression was reduced. Moreover, luteinizing hormone (LH), follicle-stimulating hormone (FSH) as well as plasma testosterone levels were also decreased. PS-MPs exposure also led to a substantial histopathological damage in testicular tissues. However, RHM supplementation potentially reduced the damaging effects of PS-MPs in the reproductive tissues of male albino rats. Thus, the current study revealed, RHM possesses potential to prevent PS-MPs-induced testicular damage due to its anti-oxidant anti-apoptotic, anti-inflammatory as well as androgenic properties.


Asunto(s)
Antioxidantes , Microplásticos , Masculino , Ratas , Animales , Antioxidantes/farmacología , Microplásticos/análisis , Microplásticos/metabolismo , Microplásticos/farmacología , Plásticos/análisis , Plásticos/metabolismo , Plásticos/farmacología , Poliestirenos/análisis , Poliestirenos/metabolismo , Poliestirenos/farmacología , Semen/metabolismo , Testículo , Estrés Oxidativo , Testosterona
9.
Animals (Basel) ; 13(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36766229

RESUMEN

Fas-associated factor 1 (FAF1), a member of the Fas family, is involved in biological processes such as apoptosis, inflammation, cell proliferation and proteostasis. This study aimed to explore the biological role of FAF1 in testicular tissue at different ages (juveniles (1 and 2 years old), adults (3, 4, 6, and 7 years old) and old-aged animals (11 years old)) and ovaries during different reproductive cycle phases (follicular, luteal, and pregnancy phases). FAF1 mRNA, relative protein expression and protein expression localization were determined in testes and ovaries using real-time quantification, WB and immunohistochemistry (IHC), respectively. Real-time quantification of testis tissues showed that the relative expression of FAF1 mRNA in testis tissues at 3, 4 and 7 years of age was significantly higher than of those in other ages, and in ovarian tissues was significantly higher in luteal phase ovaries than those in follicular and pregnancy phase ovaries; follicular phase ovaries were the lowest. WB of testis tissues showed that the relative protein expression of FAF1 protein was significantly higher at 11 and 7 years of age; in ovarian tissue, the relative protein expression of FAF1 protein was significantly higher in follicular phase ovaries than in luteal and pregnancy phase ovaries, and lowest in luteal phase ovaries. The relative protein expression of FAF1 at 3, 4 and 7 years of age was the lowest. IHC showed that FAF1 was mainly expressed in spermatozoa, spermatocytes, spermatogonia and supporting cells; in ovarian tissue, FAF1 was expressed in ovarian germ epithelial cells, granulosa cells, cumulus cells and luteal cells. The IHC results showed that FAF1 mRNA and protein were significantly differentially expressed in testes of different ages and ovarian tissues of different reproductive cycle phases, revealing the significance of FAF1 in the regulation of male and female B. grunniens reproductive physiology. Furthermore, our results provide a basis for the further exploration of FAF1 in the reproductive physiology of B. grunniens.

10.
Antioxidants (Basel) ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36290786

RESUMEN

Cis-diamminedichloroplatinum (II) (CDDP) is a widely used antineoplastic agent with numerous associated side effects. We investigated the mechanisms of action of the indole derivative N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide (MMINA) to protect against CDDP-induced testicular damage. Five groups of rats (n = 7) were treated with saline, DMSO, CDDP, CDDP + MMINA, or MMINA. Reproductive hormones, antioxidant enzyme activity, histopathology, daily sperm production, and oxidative stress markers were examined. Western blot analysis was performed to access the expression of steroidogenic acute regulatory protein (StAR) and inflammatory biomarker expression in testis, while expression of calcium-dependent cation channel of sperm (CatSper) in epididymis was examined. The structural and dynamic molecular docking behavior of MMINA was analyzed using bioinformatics tools. The construction of molecular interactions was performed through KEGG, DAVID, and STRING databases. MMINA treatment reversed CDDP-induced nitric oxide (NO) and malondialdehyde (MDA) augmentation, while boosting the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the epididymis and testicular tissues. CDDP treatment significantly lowered sperm count, sperm motility, and epididymis sperm count. Furthermore, CDDP reduced epithelial height and tubular diameter and increased luminal diameter with impaired spermatogenesis. MMINA rescued testicular damage caused by CDDP. MMINA rescued CDDP-induced reproductive dysfunctions by upregulating the expression of the CatSper protein, which plays an essential role in sperm motility, MMINA increased testosterone secretion and StAR protein expression. MMINA downregulated the expression of NF-κB, STAT-3, COX-2, and TNF-α. Hydrogen bonding and hydrophobic interactions were predicted between MMINA and 3ß-HSD, CatSper, NF-κß, and TNFα. Molecular interactome outcomes depicted the formation of one hydrogen bond and one hydrophobic interaction between 3ß-HSD that contributed to its strong binding with MMINA. CatSper also made one hydrophobic interaction and one hydrogen bond with MMINA but with a lower binding affinity of -7.7 relative to 3ß-HSD, whereas MMINA made one hydrogen bond with NF-κß residue Lys37 and TNF-α reside His91 and two hydrogen bonds with Lys244 and Thr456 of STAT3. Our experimental and in silico results revealed that MMINA boosted the antioxidant defense mechanism, restored the levels of fertility hormones, and suppressed histomorphological alterations.

11.
J Hum Reprod Sci ; 14(2): 113-120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34316225

RESUMEN

BACKGROUND: Aluminum chloride (AlCl3 ) present in many manufactured consumable is considered as a toxic element. AIM: Our study evaluates the toxic effects induced by AlCl3 on the testes as well as the therapeutic tendency of Quercetin (QUE) agent as an antioxidant. SETTING AND DESIGN: In the department of Anatomy of Medical School. METHODS AND MATERIALS: Thirty-two male Wistar rats weighing approximately 170 ± 10 g were assigned into four groups with eight each, fed with rat chow and water ad-libitum. Group A served as control and was given distilled water throughout; Group B was given only QUE (200 mg/kg body weight) for 21 days; Group C was given only AlCl3 (300 mg/kg body weight) for 14 days; and Group D was given AlCl3 (300 mg/kg body weight) for 14 days followed with QUE (200 mg/kg body weight) for 21 days. Substance administrations were done orally. STATISTICAL ANALYSIS: One-way analysis of variance was used to analyze the data, in GraphPad Prism 6.0 being the statistical software. RESULTS: AlCl3 significantly reduced the relative organ (testes) weight, correlating the decrease in sperm count, sperm motility and sperm viability. Furthermore, there was a decrease in luteinizing hormone with an increase in follicle-stimulating hormone which accounted for a significant reduction in testosterone level that plays a great role in spermatogenesis, following AlCl3 treatment. The cytoarchitecture of the testes showed degenerative changes in the seminiferous tubules and leydin cells, nitric oxide synthases immunoreactivity was intense in the seminiferous epithelium of rat in Group C. CONCLUSION: These suggest that QUE antioxidant property could reverse the decrease in sperm status, hormonal effects, and functional deficit induced by aluminum chloride on the testes of Wistar rats.

12.
PeerJ ; 8: e9232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509470

RESUMEN

BACKGROUND: Little is known regarding the toxic and therapeutic doses of amygdalin. Treatment regimens and schedules can vary between humans and animal models, and there have been reports of cyanide toxicity due to amygdalin use. OBJECTIVE: The aim of this study was to evaluate the effect of different doses of amygdalin on antioxidant gene expression and suppression of oxidative damage in mice. METHODS: Forty adult male mice were divided randomly into four groups (n = 10) as follows and treated orally for two weeks: a control group treated with saline solution, a group treated with amygdalin at 200 mg/kg body weight, a group treated with amygdalin at 100 mg/kg body weight, and a group treated with amygdalin at 50 mg/kg body weight. Liver and testis samples were collected for gene expression, biochemical and histopathological analyses. RESULTS: The mice treated with medium-dose amygdalin (100 mg/kg) showed upregulated mRNA expression of glutathione peroxidase (P < 0.01) and superoxide dismutase (P < 0.05) and significantly decreased lipid peroxidation (P < 0.05) in hepatic and testicular tissues compared to those in the untreated groups (controls), with mild histopathological effects. The mice treated with high-dose of amygdalin (200 mg/kg) showed downregulated mRNA expression of glutathione peroxidase and superoxide dismutase (P < 0.01) and significantly increased lipid peroxidation (P < 0.05) in both hepatic and testicular tissues compared to those in the untreated groups (controls), with an apparent effect at the histopathological level. No effects were observed in the mice treated with low-dose amygdalin (50 mg/kg) at the gene, protein and histopathological level. CONCLUSION: Low-and medium-dose amygdalin did not induce toxicity in the hepatic and testicular tissues of male mice, unlike high-dose amygdalin, which had a negative effect on oxidative balance in mice. Therefore, amygdalin at a moderate dose may improve oxidative balance in mice.

13.
Gene ; 602: 33-42, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-27864010

RESUMEN

Adenylate cyclase 3 (AC3) is an important component of the cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway and converts adenosine triphosphate into cAMP. Male mice with AC3 deletion (AC3-/-) are sterile. However, the mechanical mechanism remains unclear. By TUNEL staining, we found that cell apoptosis in the testicular tissues of AC3-/- mice increased significantly compared with that in the wild-type (AC3+/+) mice. Differentially expressed genes regulated by AC3 in the testicular tissues were identified by gene chip hybridization. We observed that the expression of 693 genes was altered in the testicular tissues of AC3-/- mice, including 330 up-regulated and 363 down-regulated gene expression with fold changes higher than 2 (≥2) as the standards. Furthermore, part of these differentially expressed genes was verified by the real-time fluorescence quantification PCR and immunofluorescent staining. The expression levels of the genes related to olfactory receptors, cell apoptosis, transcriptional activity, defensive reaction, cell adhesion, cell death, and immunoreactions were significantly altered in the testicular tissues of AC3-/- mice compared with AC3+/+ mice. In addition, the corresponding Ca2+, cAMP, and cell adhesion signaling pathways, as well as the signaling pathways related to axon guidance and cell interaction, were altered significantly in the AC3-/- mice. These data would help elucidate the general understanding of the mechanisms underlying the sterility in AC3-/- male mice.


Asunto(s)
Adenilil Ciclasas/deficiencia , Testículo/metabolismo , Adenilil Ciclasas/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Epigénesis Genética , Expresión Génica , Perfilación de la Expresión Génica , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética , Testículo/patología
14.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-140052

RESUMEN

OBJECTIVE: The aim of this study was to investigate the morphological aspects of testicular tissue before and after freezing-thawing by light and transmission electron microscopy. METHODS: Tissue biopsies were carried out on mouse testis for freezing. Samples in medium containing 20% glycerol were frozen by computer-controlled freezing program. The effect of freezing-thawing on the structural change of testicular tissues were examined by light and electron microscopy. RESULTS: The freezing-thawing procedure had no significant effect on tubular diameter. However, it caused folding of the lamina propria, and notable damage to Sertoli cells, spermatogonia and spermatocytes. The cells were detached, desquamated from the basal lamina and had increased vacuolization. Round spermatids, elongated spermatids and spermatozoa were less affected, and most of them maintained their normal structure. CONCLUSIONS: The structure of spermatogonia, spermatocyte and basal compartments in seminiferous epithelium was significantly altered by freezing-thawing procedure of mouse testicular tissues. Thus, we need to develop a more reliable method for the cryopreservation of testicular tissues.


Asunto(s)
Animales , Ratones , Membrana Basal , Biopsia , Criopreservación , Congelación , Glicerol , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Membrana Mucosa , Epitelio Seminífero , Túbulos Seminíferos , Células de Sertoli , Espermátides , Espermatocitos , Espermatogonias , Espermatozoides , Testículo
15.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-140053

RESUMEN

OBJECTIVE: The aim of this study was to investigate the morphological aspects of testicular tissue before and after freezing-thawing by light and transmission electron microscopy. METHODS: Tissue biopsies were carried out on mouse testis for freezing. Samples in medium containing 20% glycerol were frozen by computer-controlled freezing program. The effect of freezing-thawing on the structural change of testicular tissues were examined by light and electron microscopy. RESULTS: The freezing-thawing procedure had no significant effect on tubular diameter. However, it caused folding of the lamina propria, and notable damage to Sertoli cells, spermatogonia and spermatocytes. The cells were detached, desquamated from the basal lamina and had increased vacuolization. Round spermatids, elongated spermatids and spermatozoa were less affected, and most of them maintained their normal structure. CONCLUSIONS: The structure of spermatogonia, spermatocyte and basal compartments in seminiferous epithelium was significantly altered by freezing-thawing procedure of mouse testicular tissues. Thus, we need to develop a more reliable method for the cryopreservation of testicular tissues.


Asunto(s)
Animales , Ratones , Membrana Basal , Biopsia , Criopreservación , Congelación , Glicerol , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Membrana Mucosa , Epitelio Seminífero , Túbulos Seminíferos , Células de Sertoli , Espermátides , Espermatocitos , Espermatogonias , Espermatozoides , Testículo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA