Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210157

RESUMEN

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells. We previously optimized a thiol-Michael addition hydrogel for physical, chemical, and biological compatibility with the GBM microenvironment and demonstrated CXCL12-mediated chemotaxis can attract and entrap GBM cells into this hydrogel. In this study, we synthesize hydrogels under conditions mimicking GBM resection cavities and assess feasibility of histotripsy to ablate hydrogel-encapsulated cells. The results showed the hydrogel synthesis was bio-orthogonal, not shear-thinning, and can be scaled up for injection into GBM resection mimics in vitro. Experiments also demonstrated ultrasound imaging can distinguish the synthetic hydrogel from healthy porcine brain tissue. Finally, a 500 kHz transducer applied focused ultrasound treatment to the synthetic hydrogels, with results demonstrating precise histotripsy bubble clouds could be sustained in order to uniformly ablate red blood cells encapsulated by the hydrogel for homogeneous, mechanical fractionation of the entrapped cells. Overall, this hydrogel is a promising platform for biomaterials-based GBM treatment.

2.
J Control Release ; 373: 117-127, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38968970

RESUMEN

Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.

3.
ACS Appl Mater Interfaces ; 15(29): 34407-34418, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435912

RESUMEN

Injectable hydrogels show great promise in developing novel regenerative medicine solutions and present advantages for minimally invasive applications. Hydrogels based on extracellular matrix components, such as collagen, have the benefits of cell adhesiveness, biocompatibility, and degradability by enzymes. However, to date, reported collagen hydrogels possess severe shortcomings, such as nonbiocompatible cross-linking chemistry, significant swelling, limited range of mechanical properties, or gelation kinetics unsuitable for in vivo injection. To solve these issues, we report the design and characterization of an injectable collagen hydrogel based on covalently modified acetyl thiol collagen cross-linked using thiol-maleimide click chemistry. The hydrogel is injectable for up to 72 h after preparation, shows no noticeable swelling, is transparent, can be molded in situ, and retains its shape in solution for at least one year. Notably, the hydrogel mechanical properties can be fine-tuned by simply adjusting the reactant stoichiometries, which to date was only reported for synthetic polymer hydrogels. The biocompatibility of the hydrogel is demonstrated in vitro using human corneal epithelial cells, which maintain viability and proliferation on the hydrogels for at least seven days. Furthermore, the developed hydrogel showed an adhesion strength on soft tissues similar to fibrin glue. Additionally, the developed hydrogel can be used as a sealant for repairing corneal perforations and can potentially alleviate the off-label use of cyanoacrylate tissue adhesive for repairing corneal perforations. Taken together, these characteristics show the potential of the thiol collagen hydrogel for future use as a prefabricated implant, injectable filler, or as sealant for corneal repair and regeneration.


Asunto(s)
Perforación Corneal , Hidrogeles , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Química Clic , Compuestos de Sulfhidrilo/química , Colágeno/farmacología , Colágeno/química , Maleimidas/farmacología
4.
ACS Biomater Sci Eng ; 9(7): 4223-4240, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37379254

RESUMEN

Polymeric microparticles are promising biomaterial platforms for targeting macrophages in the treatment of disease. This study investigates microparticles formed by a thiol-Michael addition step-growth polymerization reaction with tunable physiochemical properties and their uptake by macrophages. The hexafunctional thiol monomer dipentaerythritol hexa-3-mercaptopropionate (DPHMP) and tetrafunctional acrylate monomer di(trimethylolpropane) tetraacrylate (DTPTA) were reacted in a stepwise dispersion polymerization, achieving tunable monodisperse particles over a size range (1-10 µm) relevant for targeting macrophages. An off-stoichiometry thiol-acrylate reaction afforded facile secondary chemical functionalization to create particles with different chemical moieties. Uptake of the microparticles by RAW 264.7 macrophages was highly dependent on treatment time, particle size, and particle chemistry with amide, carboxyl, and thiol terminal chemistries. The amide-terminated particles were non-inflammatory, while the carboxyl- and thiol-terminated particles induced pro-inflammatory cytokine production in conjunction with particle phagocytosis. Finally, a lung-specific application was explored through time-dependent uptake of amide-terminated particles by human alveolar macrophages in vitro and mouse lungs in vivo without inducing inflammation. The findings demonstrate a promising microparticulate delivery vehicle that is cyto-compatible, is non-inflammatory, and exhibits high rates of uptake by macrophages.


Asunto(s)
Macrófagos , Compuestos de Sulfhidrilo , Animales , Ratones , Humanos , Compuestos de Sulfhidrilo/química , Acrilatos/química , Amidas
5.
Adv Healthc Mater ; 12(14): e2300671, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37014179

RESUMEN

Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Quimiotaxis , Línea Celular Tumoral , Hidrogeles/farmacología , Células Madre Neoplásicas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Microambiente Tumoral , Quimiocina CXCL12/farmacología
6.
J Colloid Interface Sci ; 636: 176-183, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36630855

RESUMEN

HYPOTHESIS: Injectable hydrogels are important in situ forming implants for tissue regeneration at damaged sites. Understanding the behavior of these systems in a complex in vivo environment remains a challenge. Ultrathin films as 2D model systems are expected to provide fundamental insights into formation and (bio)degradation at material-liquid interfaces, and are also applicable as bioresponsive coatings. EXPERIMENTS: Hydrogel ultrathin films are prepared by covalently cross-linking four-arm PEG macromers with maleimide end-groups (PEG4MAL) at alkaline pH using two different types of dithiol-bearing cross-linkers - thio-depsipeptide (TDP) or 3,6-Dioxa-1,8-octanedithiol (DODT). This thiol-Michael addition "click" reaction is carried out at the air-water interface using the Langmuir technique. Morphological observation in real time is carried out by Brewster angle microscopy (BAM) and in coatings using atomic force microscopy (AFM). Stability against enzymatic and oxidative degradation is evaluated in the same setup. FINDINGS: Non-cross-linked PEG or PEG incubated with cross-linkers at slightly acidic pH desorbs from the interface over time. Cross-linking of PEG at alkaline pH renders 2D hydrogel networks (thickness <1 nm) that are stable against desorption. They are easily transferrable onto solid mica surfaces, forming homogenous coatings as revealed by AFM. The type of dithiol cross-linker used to form the branching centers influences the degradability of these 2D hydrogel networks in the presence of lipase, peroxides, or bases. For example, enzymatic degradation of the 2D hydrogel networks can be switched "on" or "off" depending on the cleavable sites in the cross-linkers.

7.
ACS Infect Dis ; 9(1): 56-64, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516858

RESUMEN

Malaria is an infectious disease transmitted by mosquitos, whose control is hampered by drug resistance evolution in the causing agent, protist parasites of the genus Plasmodium, as well as by the resistance of the mosquito to insecticides. New approaches to fight this disease are, therefore, needed. Research into targeted drug delivery is expanding as this strategy increases treatment efficacies. Alternatively, targeting the parasite in humans, here we use single-chain polymer nanoparticles (SCNPs) to target the parasite at the ookinete stage, which is one of the stages in the mosquito. This nanocarrier system provides uniquely sized and monodispersed particles of 5-20 nm, via thiol-Michael addition. The conjugation of succinic anhydride to the SCNP surface provides negative surface charges that have been shown to increase the targeting ability of SCNPs to Plasmodium berghei ookinetes. The biodistribution of SCNPs in mosquitos was studied, showing the presence of SCNPs in mosquito midguts. The presented results demonstrate the potential of anionic SCNPs for the targeting of malaria parasites in mosquitos and may lead to progress in the fight against malaria.


Asunto(s)
Culicidae , Malaria , Nanopartículas , Parásitos , Humanos , Animales , Polímeros , Distribución Tisular , Plasmodium berghei , Malaria/tratamiento farmacológico , Malaria/parasitología
8.
Bioorg Chem ; 129: 106221, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341740

RESUMEN

Glutathione (GSH) level has long been recognized as a valuable tumor biomarker. GSH-mediated activation and release systems have been extensively developed for cancer diagnosis and treatment, but mainly focused on disulfide-based conjugate. We reported here a new thiol-Michael addition based GSH response conjugate TC6, which consists of a unique tricyclic structure containing α, ß-unsaturated ketone responsive groups. The conjugate was easily synthesized and showed good selectivity to glutathione with certain stability. The camptothecin delivery experiment of TC6 showed improved anti-tumor ability in cells and tumor-bearing mice. TC6 could be used for the development of antibody or small molecule conjugated drugs.


Asunto(s)
Glutatión , Compuestos de Sulfhidrilo , Ratones , Animales , Compuestos de Sulfhidrilo/farmacología , Glutatión/química , Camptotecina/química , Cetonas , Disulfuros
9.
Acta Biomater ; 144: 266-278, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296443

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer and although patients undergo surgery and chemoradiotherapy, residual cancer cells still migrate to healthy brain tissue and lead to tumor relapse after treatment. New therapeutic strategies are therefore urgently needed to better mitigate this tumor recurrence. To address this need, we envision after surgical removal of the tumor, implantable biomaterials in the resection cavity can treat or collect residual GBM cells for their subsequent eradication. To this end, we systematically characterized a poly(ethylene glycol)-based injectable hydrogel crosslinked via a thiol-Michael addition reaction by tuning its hydration level and aqueous NaHCO3 concentration. The physical and chemical properties of the different formulations were investigated by assessing the strength and stability of the polymer networks and their swelling behavior. The hydrogel biocompatibility was assessed by performing in vitro cytotoxicity assays, immunoassays, and immunocytochemistry to monitor the reactivity of astrocytes cultured on the hydrogel surface over time. These characterization studies revealed key structure-property relationships. Furthermore, the results indicated hydrogels synthesized with 0.175 M NaHCO3 and 50 wt% water content swelled the least, possessed a storage modulus that can withstand high intracranial pressures while avoiding a mechanical mismatch, had a sufficiently crosslinked polymer network, and did not degrade rapidly. This formulation was not cytotoxic to astrocytes and produced minimal immunogenic responses in vitro. These properties suggest this hydrogel formulation is the most optimal for implantation in the resection cavity and compatible toward GBM therapy. STATEMENT OF SIGNIFICANCE: Survival times for glioblastoma patients have not improved significantly over the last several decades, as cancer cells remain after conventional therapies and form secondary tumors. We characterized a biodegradable, injectable hydrogel to reveal structure-property relationships that can be tuned to conform the hydrogel toward glioblastoma therapy. Nine formulations were systematically characterized to optimize the hydrogel based on physical, chemical, and biological compatibility with the glioblastoma microenvironment. This hydrogel can potentially be used for adjuvant therapy to glioblastoma treatment, such as by providing a source of molecular release for therapeutic agents, which will be investigated in future work. The optimized formulation will be developed further to capture and eradicate glioblastoma cells with chemical and physical stimuli in future research.


Asunto(s)
Glioblastoma , Materiales Biocompatibles/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Hidrogeles/química , Recurrencia Local de Neoplasia , Polímeros/uso terapéutico , Compuestos de Sulfhidrilo/química , Microambiente Tumoral
10.
Front Cell Dev Biol ; 9: 729670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671601

RESUMEN

Glycosaminoglycans (GAGs) are long, linear polysaccharides that occur in the extracellular matrix of higher organisms and are either covalently attached to protein cores, as proteoglycans or in free form. Dependent on their chemical composition and structure, GAGs orchestrate a wide range of essential functions in tissue homeostasis. Accordingly, GAG-based biomaterials play a major role in tissue engineering. Current biomaterials exploit crosslinks between chemically modified GAG chains. Due to modifications along the GAG chains, they are limited in their GAG-protein interactions and accessibility to dissect the biochemical and biophysical properties that govern GAG functions. Herein, a natural presentation of GAGs is achieved by a terminal immobilization of GAGs to a polyethylene glycol (PEG) hydrogel. A physicochemical characterization showed that different end-thiolated GAGs can be incorporated within physiological concentration ranges, while the mechanical properties of the hydrogel are exclusively tunable by the PEG polymer concentration. The functional utility of this approach was illustrated in a 3D cell culture application. Immobilization of end-thiolated hyaluronan enhanced the formation of capillary-like sprouts originating from embedded endothelial cell spheroids. Taken together, the presented PEG/GAG hydrogels create a native microenvironment with fine-tunable mechanobiochemical properties and are an effective tool for studying and employing the bioactivity of GAGs.

11.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201140

RESUMEN

Polysaccharide conjugates are important renewable materials. If properly designed, they may for example be able to carry drugs, be proactive (e.g., with amino acid substituents) and can carry a charge. These aspects can be particularly useful for biomedical applications. Herein, we report a simple approach to preparing polysaccharide conjugates. Thiol-Michael additions can be mild, modular, and efficient, making them useful tools for post-modification and the tailoring of polysaccharide architecture. In this study, hydroxypropyl cellulose (HPC) and dextran (Dex) were modified by methacrylation. The resulting polysaccharide, bearing α,ß-unsaturated esters with tunable DS (methacrylate), was reacted with various thiols, including 2-thioethylamine, cysteine, and thiol functional quaternary ammonium salt through thiol-Michael addition, affording functionalized conjugates. This click-like synthetic approach provided several advantages including a fast reaction rate, high conversion, and the use of water as a solvent. Among these polysaccharide conjugates, the ones bearing quaternary ammonium salts exhibited competitive antimicrobial performance, as supported by a minimum inhibitory concentration (MIC) study and tracked by SEM characterization. Overall, this methodology provides a versatile route to polysaccharide conjugates with diverse functionalities, enabling applications such as antimicrobial activity, gene or drug delivery, and biomimicry.

12.
J Colloid Interface Sci ; 593: 79-88, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33744554

RESUMEN

Fluorinated polyhedral oligomeric silsesquioxane (F-POSS) is one of the most popular candidates at present for superhydrophobic coating. Because of its ultralow surface energy, F-POSS has usually been dissolved with expensive fluoro-solvents, and the melting temperature of F-POSS is not high (122-140 °C), which will cause its loss during use. So trying to polymerize/crosslink F-POSS molecules and/or directly graft F-POSS to substrate is important. In this work, we report the SI-eATRP grafting of methacryl POSS (MA-POSS) on cotton and the subsequent amine catalyzed thiol-methacrylate Michael addition reaction of poly(MA-POSS) with 1H, 1H, 2H, 2H-perfluorododecyl-1-thiol (PFDT) for the fabrication of a durable poly(MA-POSS)-PFDT coating. The cotton fabric coated with poly(MA-POSS) was nearly superhydrophobic after 4 h of SI-eATRP process under potentiostatic condition of -0.40 V. Although the water contact angle (WCA) was ~148°, water droplets tended to adhere to the cotton fabric surface even when the fabric was turned upside down. After fluorination, WCA was increased to ~160°, and water drops could slide off when the fabric was slightly tilted. The sliding angle (SA) was ~10°. The as-prepared poly(MA-POSS)-PFDT coating was durable against repeated washing and physical abrasion. After 30 accelerated washing cycles (equals to 150 home laundering cycles), the coated fabric still showed superhydrophobicity. After 800 abrasion cycles over sandpaper, the WCA was still as high as 149°. In addition, the coated fabric had self-healing ability and could restore its superhydrophobicity after plasma etching through heat treatment. After 10 cycles of plasma etching and heat-induced healing process, the WCA of the coated fabric kept at ~154°. Such a durable superhydrophobic fabric coating may find applications in the development of functional clothing for a variety of purposes.

13.
FASEB J ; 35(3): e21305, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33566368

RESUMEN

The liver plays a central role in glucose homeostasis and hepatic insulin resistance constitutes a key feature of type 2 diabetes. However, platforms that accurately mimic human hepatic glucose disposition and allow for rapid and scalable quantification of glucose consumption dynamics are lacking. Here, we developed and optimized a colorimetric glucose assay based on the glucose oxidase-peroxidase system and demonstrate that the system can monitor glucose consumption in 3D primary human liver cell cultures over multiple days. The system was highly sensitive (limit of detection of 3.5 µM) and exceptionally accurate (R2  = 0.999) while requiring only nanoliter input volumes (250 nL), enabling longitudinal profiling of individual liver microtissues. By utilizing a novel polymer, off-stoichiometric thiol-ene (OSTE), and click-chemistry based on thiol-Michael additions, we furthermore show that the assay can be covalently bound to custom-build chips, facilitating the integration of the sensor into microfluidic devices. Using this system, we find that glucose uptake of our 3D human liver cultures closely resembles human hepatic glucose uptake in vivo as measured by euglycemic-hyperinsulinemic clamp. By comparing isogenic insulin-resistant and insulin-sensitive liver cultures we furthermore show that insulin and extracellular glucose levels account for 55% and 45% of hepatic glucose consumption, respectively. In conclusion, the presented data show that the integration of accurate and scalable nanoliter glucose sensors with physiologically relevant organotypic human liver models enables longitudinal profiling of hepatic glucose consumption dynamics that will facilitate studies into the biology and pathobiology of glycemic control, as well as antidiabetic drug screening.


Asunto(s)
Glucosa/metabolismo , Insulina/farmacología , Hígado/metabolismo , Técnicas Biosensibles , Calibración , Células Cultivadas , Glucosa/análisis , Técnica de Clampeo de la Glucosa , Ensayos Analíticos de Alto Rendimiento , Humanos , Resistencia a la Insulina , Esferoides Celulares
14.
J Chromatogr A ; 1617: 460807, 2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31889519

RESUMEN

Click chemistry has attracted increasing attention for the synthesis of novel stationary phases. Considering the advantage of click chemistry, a strategy based on thiol-Michael addition was developed for the preparation of a new stationary phase herein, and a phenyl vinyl sulfone stationary phase (M-PVS) was prepared. The resulting M-PVS bonded silica was characterized by elemental analysis, solid-state 13C cross-polarization/magic-angle spinning NMR and infrared spectroscopy, confirming the successful immobilization of phenyl vinyl sulfone on the silica support. The retention properties of M-PVS were investigated and exhibited unambiguous reversed phase retention characteristics. Moreover, shape selectivity and silanol activity were studied to reveal the diverse interactions of M-PVS, including hydrophobic, π-π, hydrogen bonding, and ion-exchange interactions. In addition, de-wetting tolerance and hydrophilic properties were evaluated and a pronounced "U" retention curves were obtained, indicating enhanced retention for polar analytes and transitions of different interaction modes. Selectivity differences between M-PVS column, phenyl column and conventional C18 column were examined using series natural standards. The diverse interactions of M-PVS demonstrated its improved selectivity for the compounds with similar hydrophobic skeleton but different polar substituents.


Asunto(s)
Cromatografía Liquida , Química Clic , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Silanos/química , Dióxido de Silicio/química , Espectrofotometría Infrarroja , Compuestos de Sulfhidrilo/química , Sulfonas/química
15.
Chemistry ; 26(4): 809-813, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31797435

RESUMEN

Donor-acceptor Stenhouse adducts (DASA) are popular photoswitches capable of toggling between two isomers depending on the light and temperature of the system. The cyclized polar form is accessed by visible-light irradiation, whereas the linear nonpolar form is recovered in the dark. Upon the formation of the cyclized form, the DASA contains a double bond featuring a ß-carbon prone to nucleophilic attack. Here, an isomer selective thiol-Michael reaction between the cyclized DASA and a base-activated thiol is introduced. The thiol-Michael addition was carried out with an alkyl (1-butanethiol) and an aromatic thiol (p-bromothiophenol) as reaction partners, both in the presence of a base. Under optimized conditions, the reaction proceeds preferentially in the presence of light and base. The current study demonstrates that DASAs can be selectively trapped in their cyclized state.

16.
J Mech Behav Biomed Mater ; 88: 160-169, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30173068

RESUMEN

Biocompatible hydrogels with defined mechanical properties are critical to tissue engineering and regenerative medicine. Thiol-acrylate photopolymerized hydrogels have attracted special interest for their degradability and cytocompatibility, and for their tunable mechanical properties through controlling factors that affect reaction kinetics (e.g., photopolymerization, stoichiometry, temperature, and solvent choice). In this study, we hypothesized that the mechanical property of these hydrogels can be tuned by photoinitiators via photobleaching and by thiol-Michael addition reactions. To test this hypothesis, a multiscale mathematical model incorporating both photobleaching and thiol-Michael addition reactions was developed and validated. After validating the model, the effects of thiol concentration, light intensity, and pH values on hydrogel mechanics were investigated. Results revealed that hydrogel stiffness (i) was maximized at a light intensity-specific optimal concentration of thiol groups; (ii) increased with decreasing pH when synthesis occurred at low light intensity; and (iii) increased with decreasing light intensity when synthesis occurred at fixed precursor composition. The multiscale model revealed that the latter was due to higher initiation efficiency at lower light intensity. More broadly, the model provides a framework for predicting mechanical properties of hydrogels based upon the controllable kinetics of thiol-acrylate photopolymerization.


Asunto(s)
Acrilatos/química , Hidrogeles/química , Fotoblanqueo , Procesos Fotoquímicos , Polimerizacion , Compuestos de Sulfhidrilo/química , Módulo de Elasticidad , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos
17.
ACS Appl Mater Interfaces ; 10(37): 30946-30951, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30152672

RESUMEN

Single-chain polymer nanoparticles (SCNPs) are protein-inspired materials based on intramolecularly cross-linked polymer chains. We report here the development of SCNPs as uniquely sized nanocarriers that are capable of drug encapsulation independent of the polarity of the employed medium. Synthetic routes are presented for SCNP preparation in both organic and aqueous environments. Importantly, the SCNPs in organic media were successfully rendered water soluble, resulting in two complementary pathways toward water-soluble SCNPs with comparable resultant physicochemical characteristics. The solvatochromic dye Nile red was successfully encapsulated inside the SCNPs following both pathways, enabling probing of the SCNP interior. Moreover, the antibiotic rifampicin was encapsulated in organic medium, the loaded nanocarriers were rendered water soluble, and a controlled release of rifampicin was evidenced. The absence of discernible cytotoxic effects and promising cellular uptake behavior bode well for the application of SCNPs in controlled therapeutics delivery.


Asunto(s)
Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Agua/química
18.
Macromol Rapid Commun ; 39(19): e1800169, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29749016

RESUMEN

The synthesis of crosslinked polymeric microspheres (3.8-15.0 µm) via (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) initiated thiol-ene dispersion polymerization under ambient conditions is reported for the first time. The initiating ability of TEMPO for the thiol-ene reaction is validated by electron paramagnetic resonance (EPR) and 1 H nuclear magnetic resonance (NMR) spectroscopy on model reactions between 1-octadecanethiol and two electron deficient enes, n-butylacrylate and divinyl sulfone. Critically, the TEMPO resonance observed in the EPR spectra decreases with time when TEMPO is mixed with thiol and an electron deficient ene. The 1 H NMR spectra demonstrate formation of up to 90% of thioether under ambient conditions. Based on these model reactions, a variety of crosslinked polymeric microspheres are synthesized with excellent morphological stability using poly(vinyl pyrrolidone) as surfactant. The ability of the microspheres for a second TEMPO initiated thiol-ene reaction is demonstrated by the ligation of fluorescein-5-maleimide (an ene) to the microspheres' surface containing excess of thiol functionality and by ligation of cysteine (containing a thiol group) to the microspheres' surface containing an excess of ene functionality. The synthesized polymeric microspheres are characterized using scanning electron microscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy, zeta potential, and X-ray photoelectron spectroscopy.


Asunto(s)
Microesferas , Piperidinas/química , Povidona/química
19.
Adv Mater ; 29(16)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218477

RESUMEN

Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique.

20.
Macromol Biosci ; 16(6): 906-13, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26938024

RESUMEN

Amphiphilic triblock copolymers mPEG-b-PMAC-b-PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε-caprolactone. Copolymers are self-assembled into core-shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X-ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hemoglobinas/química , Nanopartículas/química , Acridinas/química , Caproatos/química , Hemoglobinas/síntesis química , Lactonas/química , Micelas , Oxígeno/química , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA