RESUMEN
The aim of this study was to examine the presence of tick-borne rickettsial bacteria in Rhipicephalus sanguineus sensu stricto ticks collected from dogs in the Patagonian region of Argentina. Fourteen stray dogs from Valcheta, Río Negro province, Argentina were examined for the presence of R. sanguineus s.s. ticks. Ninety ticks were collected and identified to species level. DNA was extracted and analysed by conventional PCR assays for the presence of tick-borne bacteria belonging to the genera Anaplasma, Ehrlichia and Rickettsia. Thirty-three tick pools were tested by different PCR assays of which 3 were positive for Anaplasmataceae bacteria. From the 3 Anaplasmataceae positive samples, 2 partial 16S rDNA sequences were generated and belonging to Anaplasma platys, the causative agent of canine cyclic thrombocytopenia. Two tick samples were positive in Rickettsia specific PCR assays and were identified by phylogenetic analysis as Rickettsia massiliae, a member of the spotted fever group rickettsiae. The results of this study demonstrate the molecular detection of 2 rickettsial bacteria in R. sanguineus s.s. in a region of Argentina where no data were available so far.
RESUMEN
Anaplasmataceae bacteria are emerging infectious agents transmitted by ticks. The aim of this study was to identify the molecular diversity of this bacterial family in ticks and hosts, both domestic and wild, as well as blood meal sources of free-living ticks in northeastern Paraguay. The bacteria were identified using PCR-HRM, a method optimized for this purpose, while the identification of ticks and their blood meal was performed using conventional PCR. All amplified products were subsequently sequenced. The bacteria detected in the blood hosts included Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum, Candidatus Anaplasma boleense, and Wolbachia spp., which had not been previously reported in the country. Free-living and parasitic ticks on dogs (Canis lupus familiaris) and wild armadillos (Dasypus novemcinctus) were collected and identified as Rhipicephalus sanguineus and Amblyomma spp. The species E. canis, A. platys, A. phagocytophilum, and Ca. A. boleense were detected in domestic dog ticks, and E. canis and A. platys were found for the first time in armadillos and free-living ticks. Blood feeding sources detected in free-living ticks were rodents, humans, armadillos and dogs. Results show a high diversity of tick-borne pathogens circulating among domestic and wild animals in the northeastern region of Paraguay.
RESUMEN
The aim of this work was to develop a real-time PCR assay with a TaqMan® probe that detects a species-specific part of the 16S rDNA gene of Ehrlichia canis. Canine blood samples (n = 207), collected and tested by a conventional PCR assay within a study conducted by De Salvo et al., were simultaneously analyzed with the novel designed real-time PCR, and the results of both assays were compared. The agreement between the two methods was 97.6 % with a kappa value of 0.92186. Hereby, the standard error was 0.034416 and the 95 % confidence interval from 0.8544 to 0.98931. While the conventional PCR assay showed false negative results (2.42 %; 5/207), the real-time PCR assays showed a specificity of 100 %. The results of the current study showed that the developed assay presents sensitivity and specificity for the detection of E. canis in blood samples, adding a new tool for the diagnosis of this pathogen.
RESUMEN
The first autochthonous case of rickettsiosis is reported here. The case occurred in the Costanera Sur Ecological Reserve, a protected area of the City of Buenos Aires, in August 2022, where 4 species of ticks were found, namely Amblyomma aureolatum, Ixodes auritulus sensu lato, Rhipicephalus sanguineus sensu stricto and Amblyomma triste. The epidemiological, ecological, clinical and laboratory aspects that allowed timely diagnosis and appropriate treatment are also described.
Asunto(s)
Amblyomma , Argentina , Animales , Humanos , Masculino , Amblyomma/microbiología , Femenino , Rhipicephalus sanguineus/microbiología , Rickettsiosis Exantemáticas/epidemiología , Rickettsiosis Exantemáticas/diagnóstico , Ixodes/microbiología , Ixodidae/microbiologíaRESUMEN
Monitoring wildlife health is essential for understanding global disease patterns, particularly as vector-borne infections extend the geographic ranges and thereby hosts due to environmental shifts. Anaplasma marginale, primarily impacting cattle, has economic implications and has been found in diverse hosts, yet its presence in capybaras (Hydrochoerus hydrochaeris), influential in tick-borne pathogen spread, lacks comprehensive understanding. From 2015 to 2022, 14 capybaras were surveyed across two different areas of northeastern Argentina. In 1 of 14 (7%) capybaras, the presence of A. marginale was confirmed through the amplification of specific genes, msp5 and msp1ß. In addition, A. marginale DNA was detected in the capybara's blood sample through quantitative PCR, with a cycle threshold value of 30.81 (800 copies per reaction). Amplification of a fragment of the msp1α gene revealed PCR products of three different sizes, suggesting the presence of at least three coinfecting A. marginale variants in the capybara host. This study suggests that capybaras are wild hosts for A. marginale in the Ibera Wetlands in Argentina, potentially influencing the infection dynamics of both domestic and wild species. This finding highlights the necessity for thorough studies on the role of capybaras in disease dynamics, crucial for understanding wildlife health and the spread of disease.
Asunto(s)
Anaplasma marginale , Anaplasmosis , Roedores , Animales , Anaplasma marginale/genética , Anaplasma marginale/aislamiento & purificación , Argentina/epidemiología , Anaplasmosis/epidemiología , Anaplasmosis/microbiología , Roedores/microbiología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiologíaRESUMEN
BACKGROUND: Ticks are obligate hematophagous ectoparasites involved in transmitting viruses of public health importance. The objective of this work was to identify the Jingmen tick virus in hard ticks from the Colombian Caribbean, an arbovirus of importance for public health. METHODS: Ticks were collected in rural areas of Córdoba and Cesar, Colombia. Taxonomic identification of ticks was carried out, and pools of 13 individuals were formed. RNA extraction was performed. Library preparation was performed with the MGIEasy kit, and next-generation sequencing (NGS) with MGI equipment. Bioinformatic analyses and taxonomic assignments were performed using the Galaxy platform, and phylogenetic analyses were done using IQ-TREE2. RESULTS: A total of 766 ticks were collected, of which 87.33% (669/766) were Rhipicephalus microplus, 5.4% (42/766) Dermacentor nitens, 4.2% (32/766) Rhipicephalus linnaei, and 3.0% (23/766) Amblyomma dissimile. Complete and partial segments 1, 2, 3, and 4 of Jingmen tick virus (JMTV) were detected in the metatranscriptome of the species R. microplus, D. nitens, and A. dissimile. The JMTVs detected are phylogenetically related to JMTVs detected in Aedes albopictus in France, JMTVs detected in R. microplus in Trinidad and Tobago, JMTVs in R. microplus and A. variegatum in the French Antilles, and JMTVs detected in R. microplus in Colombia. Interestingly, our sequences clustered closely with JMTV detected in humans from Kosovo. CONCLUSIONS: JMTV was detected in R. microplus, D. nitens, and A. dissimile. JMTV could pose a risk to humans. Therefore, it is vital to establish epidemiological surveillance measures to better understand the possible role of JMTV in tropical diseases.
Asunto(s)
Arbovirus , Ixodidae , Filogenia , Animales , Colombia/epidemiología , Ixodidae/virología , Ixodidae/clasificación , Arbovirus/genética , Arbovirus/aislamiento & purificación , Arbovirus/clasificación , Región del Caribe , Femenino , Masculino , Salud Pública , Secuenciación de Nucleótidos de Alto Rendimiento , Rhipicephalus/virología , Rhipicephalus/clasificación , Humanos , Amblyomma/virología , Dermacentor/virologíaRESUMEN
Rickettsiales are obligate intracellular bacteria that need vertebrates and arthropods to maintain their life cycles. Some species of the genera Anaplasma, Ehrlichia, and Rickettsia are transmitted by ticks to both animals and humans and can cause mild to severe and even fatal cases. In the Americas, there is substantial data on rickettsial agents, encompassing both clinical cases and the detection of these agents in ticks, but in Ecuador, the information about them remains poorly understood. Therefore, the objective of this study was to detect molecularly rickettsial agents in Amblyomma maculatum ticks in both parasitic and free-living phases collected from domestic animals and pasture in five localities across three coastal provinces of Ecuador. Rickettsia parkeri, Candidatus Rickettsia andeanae, and Ehrlichia sp. were recorded in A. maculatum for the first time in Ecuador. These records were made in a region where antibodies to the Spotted Fever Rickettsia Group were detected in humans. Additional studies are needed to characterize Ehrlichia sp. at a specific level. Furthermore, recognizing the specific Rickettsiales species circulating in the ticks and the hosts within a region is crucial for assessing potential contact risks.
Asunto(s)
Amblyomma , Rickettsiales , Amblyomma/microbiología , Ecuador , Rickettsiales/clasificación , Rickettsiales/genética , Rickettsiales/aislamiento & purificación , Animales Domésticos/parasitología , Animales , ADN Bacteriano/genética , FilogeniaRESUMEN
Tick-borne infectious agents (TBIAs) include several bacteria and protozoa that can infect vertebrates, including humans. Some of these agents can cause important diseases from both a public health perspective, such as Lyme disease, and from an animal health and production viewpoint, such as Texas fever. In Chile, several studies have assessed the presence of tick-borne disease agents in vectors and mammal hosts, mainly in the northern regions, but few studies have assessed the presence of these agents in Central and Southern Chile. This study aimed to assess the presence of three groups of TBIAs-Borrelia, Anaplasmataceae, and Piroplasmida-in cricetid rodents of Central and Southern Chile. A total of 207 specimens from 13 localities between the O'Higgins and Los Lagos regions were captured. DNA was extracted from the liver and spleen, and subsequently underwent polymerase chain reaction (PCR) amplification targeting the 16S rRNA, flaB, and 18S rRNA genes to detect DNA from Borrelia, Anaplasmataceae, and Piroplasmida, respectively. Although no DNA from these TBIAs was detected, the DNA extraction process was validated by optimal DNA purity ratios (an A260/A280 ratio within the 1.6-2.0 range) and successful internal control amplification in all samples. These results, in addition to findings from previous reports, suggest a very low prevalence of these TBIAs in the rodent population studied. Further research into the factors influencing the presence of these agents and their vectors will provide insight into the reasons underlying this low prevalence.
RESUMEN
Canine tick-borne diseases, such as babesiosis, rangeliosis, hepatozoonosis, anaplasmosis and ehrlichiosis, are of veterinarian relevance, causing mild or severe clinical cases that can lead to the death of the dog. The aim of this study was detecting tick-borne protozoan and rickettsial infections in dogs with anemia and/or thrombocytopenia in Uruguay. A total of 803 domestic dogs were evaluated, and 10% were found positive (detected by PCR) at least for one hemoparasite. Sequence analysis confirmed the presence of four hemoprotozoan species: Rangelia vitalii, Babesia vogeli, Hepatozoon canis and Hepatozoon americanum, and the rickettsial Anaplasma platys. The most detected hemoparasite was R. vitalii, followed by H. canis and A. platys. This is the first report of B. vogeli in Uruguay and the second report of H. americanum in dogs from South America. The results highlight the importance for veterinarians to include hemoparasitic diseases in their differential diagnosis of agents causing anemia and thrombocytopenia.
Asunto(s)
Anemia , Enfermedades de los Perros , Piroplasmida , Trombocitopenia , Animales , Uruguay , Perros , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Trombocitopenia/veterinaria , Trombocitopenia/parasitología , Anemia/veterinaria , Anemia/parasitología , Piroplasmida/aislamiento & purificación , Piroplasmida/genética , Femenino , Anaplasmataceae/aislamiento & purificación , Anaplasmataceae/genética , Masculino , Infecciones por Anaplasmataceae/veterinaria , Infecciones por Anaplasmataceae/epidemiología , Anaplasma/aislamiento & purificación , Anaplasma/genética , Babesiosis/parasitología , Babesiosis/diagnóstico , Coccidiosis/veterinaria , Coccidiosis/parasitología , Eucoccidiida/aislamiento & purificación , Eucoccidiida/genética , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Babesia/aislamiento & purificación , Infecciones Protozoarias en Animales/parasitología , Infecciones Protozoarias en Animales/epidemiología , Reacción en Cadena de la Polimerasa/veterinariaRESUMEN
In the last few years, the number of studies on feline hepatozoonosis has increased, but our knowledge on the actual species of Hepatozoon and/or different genotypes affecting felines is still incipient. At least three species, namely Hepatozoon felis, H. canis, and H. silvestris, have been isolated from domestic cats in various countries. Additionally, there are indications that other species and genotypes may affect felines in given geographic areas. This study was carried out to investigate the occurrence of Hepatozoon spp. in cats from Niterói, a municipality within the metropolitan area of Rio de Janeiro, Brazil. Individual blood samples were collected from 28 cats enrolled in a spaying/castration program. DNA was extracted from all samples and subjected to sequencing specific for Hepatozoon spp. DNA of H. felis was found in 21/28 cats (75%), and four genetic polymorphisms never described thus far were detected. This is the first report of H. felis in cats living in the State of Rio de Janeiro, and the present data confirm that H. felis is a species complex encompassing different genotypes circulating within cat populations. Further studies are warranted to investigate whether different genotypes have different biology or pathogenicity for felids.
Title: Hepatozoon spp. chez les chats errants de la zone métropolitaine de Rio de Janeiro, Brésil. Abstract: Au cours des dernières années, le nombre d'études sur l'hépatozoonose féline a augmenté, mais nos connaissances sur les espèces d'Hepatozoon et/ou différents génotypes affectant les félins sont encore naissantes. Au moins trois espèces, à savoir Hepatozoon felis, H. canis et H. silvestris, ont été isolées chez des chats domestiques dans divers pays. De plus, il semble que d'autres espèces et génotypes puissent affecter les félins dans des zones géographiques données. Cette étude a été réalisée pour étudier la présence d'Hepatozoon spp. chez des chats de Niterói, une municipalité de la zone métropolitaine de Rio de Janeiro, au Brésil. Des échantillons de sang ont été prélevés individuellement sur 28 chats d'un programme de castration. L'ADN a été extrait de tous les échantillons et soumis à un séquençage spécifique de Hepatozoon spp. L'ADN de H. felis a été trouvé chez 21 chats sur 28 (75%) et quatre polymorphismes génétiques, jamais décrits jusqu'à présent, ont été détectés. Il s'agit du premier signalement de H. felis chez des chats vivant dans l'État de Rio de Janeiro et les données actuelles confirment que H. felis est un complexe d'espèces englobant différents génotypes circulant au sein des populations de chats. Des études supplémentaires sont nécessaires pour déterminer si les différents génotypes ont une biologie ou une pathogénicité différente pour les félidés.
Asunto(s)
Enfermedades de los Gatos , Coccidiosis , ADN Protozoario , Eucoccidiida , Genotipo , Animales , Gatos , Brasil/epidemiología , Enfermedades de los Gatos/parasitología , Enfermedades de los Gatos/epidemiología , Coccidiosis/veterinaria , Coccidiosis/epidemiología , Coccidiosis/parasitología , Eucoccidiida/genética , Eucoccidiida/aislamiento & purificación , Eucoccidiida/clasificación , Masculino , Femenino , Polimorfismo Genético , FilogeniaRESUMEN
Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.
RESUMEN
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian ß-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
RESUMEN
Spotted fever group Rickettsia spp. (SFGR) are a large group of tick-borne bacteria causing important emerging and re-emerging diseases that affect animals and humans. While SFGR are found worldwide, a lack of surveillance and misdiagnosis particularly affect South American countries. Colombia is a high burdened country in South America, yet rickettsioses are not deemed a nationally reportable condition limiting disease-specific public health resources. As mortality rates are high for one Rickettsia pathogen species, there is a great need to better understand the epidemiological and ecological factors that increase SFGR transmission risk regionally. This literature review provides an overview of Colombia-based SFGR studies connecting knowledge about both vectors and hosts.
RESUMEN
Ticks are hematophagous arthropods and, during feeding, may transmit pathogens to vertebrate hosts, including humans. This study aimed to investigate the presence of Rickettsia spp. in ticks collected between 2010 and 2013 from free-ranging capybaras (Hydrochoerus hydrochaeris) and opossums (Didelphis albiventris) that inhabit Sabiá Park in Uberlândia, Brazil. Overall, 1,860 ticks were collected: 1,272 (68.4%) from capybaras (487 of the species Amblyomma sculptum, 475 adults and 12 nymphs; 778 Amblyomma dubitatum, 727 adults and 51 nymphs; and seven larva clusters of the genus Amblyomma); and 588 (31.6%) from opossums (21 A. sculptum, one adult and 20 nymphs; 79 A. dubitatum, all nymphs; 15 Ixodes loricatus, 12 adults and three nymphs; 457 Amblyomma sp. larva clusters; 15 Ixodes sp. larva clusters; and one Argasidae larva cluster). Out of 201 DNA samples tested for the presence of Rickettsia spp. DNA using polymerase chain reaction (PCR) 12 showed amplification of a gtlA gene segment that was specific to Rickettsia bellii, a bacterium non-pathogenic to humans. As there has been a report showing serological evidence of infections caused by Rickettsia species of the spotted fever group (SFG) in capybaras and opossums in the park, including Rickettsia rickettsii, the etiological agent of Brazilian spotted fever, and considering the presence of A. sculptum ticks, which are aggressive to humans, as well as these vertebrate hosts, which are amplifiers of R. rickettsii, it is important to monitor the presence of SFG rickettsiae in the Sabiá Park, which is visited daily by thousands of people.
Asunto(s)
Didelphis , Ixodidae , Larva , Ninfa , Rickettsia , Animales , Brasil , Rickettsia/aislamiento & purificación , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Ninfa/fisiología , Larva/microbiología , Larva/crecimiento & desarrollo , Larva/fisiología , Ixodidae/microbiología , Ixodidae/crecimiento & desarrollo , Ixodidae/fisiología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/epidemiología , Femenino , Parques Recreativos , Amblyomma/microbiología , Amblyomma/crecimiento & desarrollo , Masculino , Roedores/parasitología , Zarigüeyas/parasitologíaRESUMEN
Eight hunting dogs were visited by a state veterinarian on the island of Tobago, Trinidad and Tobago, West Indies, as owners reported anorexia and paralysis in five of their dogs. The veterinarian observed a combination of clinical signs consistent with tick-borne illness, including fever, anorexia, anaemia, lethargy and paralysis. Blood and ticks were collected from each dog and submitted to a diagnostic laboratory for analysis. Microscopic analysis revealed a mixed infection of intracytoplasmic organisms consistent with Babesia spp. (erythrocyte) and Ehrlichia spp. (monocyte), respectively, from one dog, while a complete blood count indicated a regenerative anaemia (n = 1; 12.5%), non-regenerative anaemia (n = 4; 50%), neutrophilia (n = 3; 37.5%), lymphocytosis (n = 2; 25%), thrombocytopaenia (n = 3; 37.5%) and pancytopaenia (n = 1; 12.5%). DNA isolated from the eight blood samples and 20 ticks (16 Rhipicephalus sanguineus and 4 Amblyomma ovale) were subjected to conventional PCR and next-generation sequencing of the 16S rRNA and 18S rRNA gene for Anaplasma/Ehrlichia and Babesia/Theileria/Hepatozoon, respectively. The DNA of Ehrlichia spp., closely related to Ehrlichia canis, was detected in the blood of three dogs (37.5%), Anaplasma spp., closely related to Anaplasma marginale, in two (25%), Babesia vogeli in one dog (12.5%) and seven ticks (35%) and Hepatozoon canis and Anaplasma spp., in one tick (5%), respectively. These findings highlight the need to test both the vector and host for the presence of tick-borne pathogens when undertaking diagnostic investigations. Further studies are also warranted to elucidate the susceptibility of canids to Anaplasma marginale.
RESUMEN
Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.
Asunto(s)
Virus ARN , Rhipicephalus , Animales , Humanos , Caballos , Rhipicephalus/genética , Amblyomma , Colombia , Viroma/genéticaRESUMEN
Tick-borne relapsing fever spirochetes of genus Borrelia thrive in enzootic cycles involving Ornithodoros spp. (Argasidae) mainly, and rodents. The isolation of these spirochetes usually involves a murine model in which ticks are fed and the spirochetes detected in blood several days later. Such an experiment also demonstrates that a given species of tick is competent in the transmission of the bacteria. Here, soft ticks Ornithodoros octodontus were collected in Northern Chile with the objective to experimentally determine its capacity to transmit a Borrelia sp. detected in a previous study. Two Guinea pigs (Cavia porcellus) were used to feed nymphs and adults of O. octodontus and the spirochetes in blood were inspected by dark-field microscopy and nested PCR. Although spirochetes were not seen in blood, DNA was detected in only one animal 11 days after the ticks were fed. Genetic sequences of Borrelia flaB, clpX, pepX, recG, rplB, and uvrA genes retrieved from DNA extraction of positive blood were employed to construct two phylogenetic analyses. On the one hand, the flaB tree showed the Borrelia sp. transmitted by O. octodontus clustering with Borrelia sp. Alcohuaz, which was previously detected in that same tick species. On the other hand, concatenated clpX-pepX-recG-rplB-uvrA demonstrated that the characterized spirochete branches together with "Candidatus Borrelia caatinga", a recently discovered species from Brazil. Based on the genetic profile presented in this study, the name "Candidatus Borrelia octodonta" is proposed for the species transmitted by O. octodontus. The fact that spirochetes were not observed in blood of guinea pigs, may reflect the occurrence of low spirochetemia, which could be explained because the susceptibility of infection varies depending on the rodent species that is used in experimental models. Although the vertebrate reservoir of "Ca. Borrelia octodonta" is still unknown, Octodon degus, a rodent species that is commonly parasitized by O. octodontus, should be a future target to elucidate this issue.
Asunto(s)
Argasidae , Borrelia , Escarabajos , Ornithodoros , Fiebre Recurrente , Enfermedades de los Roedores , Animales , Cobayas , Ratones , Ornithodoros/genética , Fiebre Recurrente/veterinaria , Fiebre Recurrente/epidemiología , Fiebre Recurrente/microbiología , Chile , Filogenia , Roedores , ADNRESUMEN
Rocky Mountain spotted fever (RMSF) is an international and quintessential One Health problem. This paper synthesizes recent knowledge in One Health, binational RMSF concerns, and veterinary and human medical perspectives to this fatal, reemerging problem. RMSF, a life-threatening tick-borne disease caused by the bacterium Rickettsia rickettsii, emerged during the first decade of the 21st century in impoverished communities in the southwestern US and northern Mexico. Lack of an index of suspicion, delay in diagnosis, and delayed initiation of antibiotic treatment contribute to fatality. Campaigns targeting dog neutering, restraint to residents' properties, and on-dog and on-premises treatment with acaricides temporarily reduce prevalence but are often untenable economically. Contemporary Mexican RMSF is hyperendemic in small communities and cities, whereas epidemics occur in the western US primarily in small tribal communities. In in both locations, the epidemics are fueled by free-roaming dogs and massive brown dog tick populations. In the US, RMSF has a case fatality rate of 5% to 7%; among thousands of annual cases in Mexico, case fatality often exceeds 30%.1,2 Numerous case patients in US border states have recent travel histories to northern Mexico. Veterinarians and physicians should alert the public to RMSF risk, methods of prevention, and the importance of urgent treatment with doxycycline if symptomatic. One Health professionals contribute ideas to manage ticks and rickettsial disease and provide broad education for the public and medical professionals. Novel management approaches include vaccine development and deployment, acaricide resistance monitoring, and modeling to guide targeted dog population management and other interventions.
RESUMEN
BACKGROUND: On the American continent, Rhipicephalus sanguineus s.l. comprises two species: Rhipicephalus linnaei and R. sanguineus s.s. Each species has been identified as a potential vector of at least one of five species of pathogenic bacteria of the genus Rickettsia. In particular, Rickettsia massiliae is one of three species with the greatest importance in public health at the continental level. In Mexico, this species is reported exclusively in the Nearctic states of Baja California and Chihuahua. AIM: For this reason, the aim of this work was to provide new records of R. massiliae for the centre of the country derived from active acarological surveillance. MATERIALS AND METHODS: During the period of February-October 2019, 29 dogs from six municipalities in the state of Morelos were sampled. Hosts were visually inspected, and ticks were recovered and identified morphologically and molecularly by amplification of the 16S rDNA gene. Subsequently, five genes from members of the genus Rickettsia were amplified and sequenced. RESULTS: A total of 229 (117â, 98â and 14 N) ticks identified as R. linnaei were recovered, two of which were positive for R. massiliae strains related to those recovered from Argentina and the United States. CONCLUSIONS: This work provides the second record of R. massiliae infecting R. linnaei in Mexico and the Americas, increasing the geographic distribution of this Rickettsia species in the Neotropical region, and providing information on the possible role of R. linnaei as a potential vector of this microorganism.
Asunto(s)
Enfermedades de los Perros , Rhipicephalus sanguineus , Rhipicephalus , Rickettsia , Infestaciones por Garrapatas , Perros , Animales , México/epidemiología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/microbiología , Rickettsia/genética , Rhipicephalus sanguineus/microbiologíaRESUMEN
ABSTRACT Rocky Mountain Spotted Fever is a rickettsial disease caused by the bacteria Rickettsia rickettsii. In Brazil, the disease is known as Brazilian spotted fever (BSF), being the most significant tick-borne disease in the country. Among the affected patients, only 5% of cases occur in children aged one to nine years. Typical symptoms of the disease are fever, rash, headache and digestive symptoms. Neurological manifestations such as seizures, aphasia and hemiparesis have been described in few patients. This study aimed to describe the case of an infant diagnosed with BSF who presented severe signs of neurological manifestation.