Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 260: 107378, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245157

RESUMEN

Jingmen tick virus (JMTV) is a tick-borne pathogen known to affect human beings, characterized by a segmented genome structure that defies the conventional understanding of the Flaviviridae family. In the present study, we employed metagenomic analysis to screen for tick-borne viruses in Hunan Province, China, and identified five JMTV variants with complete genomes from Rhipicephalus microplus ticks sampled from cattle. These viral strains exhibited the highest sequence similarity to JMTV isolates previously reported in Hubei Province, China. However, evidence of genomic reassortment was detected, particularly with the S2 segment showing greater similarity to the strains from Japan. Phylogenetic analysis demonstrated that JMTV strains cluster predominantly based on their geographic origin. In agreement with the homology data, the S1, S3, and S4 segments of the strains identified in this study grouped with those from Hubei Province, while the S2 segment displayed a distinct topological structure. Moreover, JMTV displayed limited replication in mammal-derived cells, but thrived in tick-derived cell lines. In addition to the commonly used R. microplus-derived BME/CTVM23 cells, we found that JMTV also proliferated robustly in both Ixodes scapularis-derived ISE6 and Ixodes ricinus-derived IRE/CTVM19 cells, offering new avenues for in vitro production of the virus. In summary, this study expands the known geographic distribution and genetic diversity of JMTV, providing valuable insights into its epidemiology and potential for in vitro cultivation.

2.
J Virol Methods ; 330: 115032, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251074

RESUMEN

Nuomin virus (NOMV), an emerging tick-borne virus (TBVs) identified in 2020, has been associated with fever, headache, and potential liver dysfunction in infected individuals. This study presents a novel TaqMan real-time quantitative PCR method designed for the rapid, sensitive, and specific detection of NOMV, facilitating early diagnosis. Utilizing Beacon Designer software 8.0, we optimized the PCR assay including the development of primers and probes to precisely target the conserved region of the NOMV genome, followed by optimization of primer and probe concentrations and annealing temperature. The resulting assay demonstrated robust performance, with standard curve represented by the equation y=-3.29x+39.42, a high correlation coefficient (R2 = 0.995) and an efficiency 99.53 %. Importantly, the method exhibited exceptional specificity, which did not yield cross-reacting signals from other TBVs, including Songling virus (SGLV), Beiji virus (BJNV), tick-borne encephalitis virus (TBEV), Yezo virus (YEZV), Alongshan virus (ALSV), and severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). The assay's detection limit was remarkably low, reaching 10 copies/µL, representing a 100-fold increase compared to semi-nested RT-PCR. Additionally, it demonstrated excellent repeatability, with coefficients of variation for intra- and inter-group tests consistently below 3 %. Clinical evaluations confirmed the assay's superior performance, highlighting its high specificity, sensitivity, and reproducibility for NOMV detection. In conclusion, the method developed in this study provides a valuable tool to support timely management of NOMV infections, with significant implications for clinical practice.

3.
Res Vet Sci ; 176: 105316, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875889

RESUMEN

To improve the knowledge on the role of bats in the maintenance and transmission of tick-borne pathogens, a molecular approach was used to characterize Anaplasma spp., Rickettsia spp., Coxiella burnetii, Borrelia burgdorferi s.l., piroplasmids, Hepatozoon spp., flaviviruses and nairoviruses in ticks collected from Iberian bats. A total of 732 bats from 25 species were captured at 38 sampling sites distributed in seven provinces of Spain between 2018 and 2022. Seventy-nine Ixodes simplex ticks were collected from 31 bats (Eptesicus isabellinus, Hypsugo savii, Myotis capaccini, Myotis emarginatus, Myotis myotis, Miniopterus schreibersii, Pipistrellus pipistrellus and Rhinolophus ferrumequinum). Sixty of 79 I. simplex were positive for at least one pathogen tested and were collected from 23 bats captured in southeast Spain. We detected the presence of Rickettsia slovaca in 12 ticks collected from M. emarginatus, H. savii, M. schreibersii and E. isabellinus; Rickettsia aeschlimannii in 1 tick from M. schreibersii; Anaplasma ovis in 3 ticks from H. savii and M. schreibersii; C. burnetii in 2 ticks from H. savii; Occidentia massiliensis in 1 tick from H. savii; piroplasmids in 12 ticks from H. savii, M. schreibersii and E. isabellinus; and a novel nairovirus in 1 tick from M. schreibersii. Furthermore, blood samples obtained from 14 of the 31 tick-infested bats were negative in all PCR analyses. This study describes new host and pathogen associations for the bat-specialist I. simplex, highlights the risk of spread of these pathogens, and encourages further research to understand the role of Iberian bats in the epidemiology of tick-borne pathogens.


Asunto(s)
Quirópteros , Ixodes , Animales , Quirópteros/microbiología , Quirópteros/virología , Ixodes/microbiología , Ixodes/virología , España/epidemiología , Rickettsia/aislamiento & purificación , Rickettsia/genética , Anaplasma/aislamiento & purificación , Anaplasma/genética , Borrelia burgdorferi/aislamiento & purificación , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/epidemiología , Coxiella burnetii/aislamiento & purificación , Coxiella burnetii/genética
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38747389

RESUMEN

Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.


Asunto(s)
Especies Introducidas , Viroma , Animales , China , Ixodidae/virología , Femenino , Cambio Climático , Masculino , Clima
5.
Acta Trop ; 253: 107158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402921

RESUMEN

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.


Asunto(s)
Virus ARN , Rhipicephalus , Animales , Humanos , Caballos , Rhipicephalus/genética , Amblyomma , Colombia , Viroma/genética
6.
Methods Protoc ; 6(5)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37736962

RESUMEN

The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.

7.
Front Microbiol ; 14: 1185829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293222

RESUMEN

Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.

8.
Front Microbiol ; 14: 1179156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200913

RESUMEN

Ticks play a significant role in transmitting arboviruses, which pose a risk to human and animal health. The region of Liaoning Province, China, with abundant plant resources with multiple tick populations, has reported several tick-borne diseases. However, there remains a scarcity of research on the composition and evolution of the tick virome. In this study, we conducted the metagenomic analysis of 561 ticks in the border area of Liaoning Province in China and identified viruses related to known diseases in humans and animals, including severe fever with thrombocytopenia syndrome virus (SFTSV) and nairobi sheep disease virus (NSDV). Moreover, the groups of tick viruses were also closely related to the families of Flaviviridae, Parvoviridae, Phenuiviridae, and Rhabdoviridae. Notably, the Dabieshan tick virus (DBTV) of the family Phenuiviridae was prevalent in these ticks, with the minimum infection rate (MIR) of 9.09%, higher than previously reported in numerous provinces in China. In addition, sequences of tick-borne viruses of the family Rhabdoviridae have first been reported from the border area of Liaoning Province, China, after being described from Hubei Province, China. This research furthered the insight into pathogens carried by ticks in the northeastern border areas of China, offering epidemiological information for possible forthcoming outbreaks of infectious diseases. Meanwhile, we provided an essential reference for assessing the risk of tick bite infection in humans and animals, as well as for exploring into the evolution of the virus and the mechanisms of species transmission.

9.
Viruses ; 15(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851495

RESUMEN

The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Filogenia , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Mamíferos , Variación Genética
10.
Pathogens ; 12(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839606

RESUMEN

There is increasing evidence that arthropod-borne pathogens exploit saliva of their vectors during the transmission process to vertebrate hosts. Extensive research of the composition of tick saliva and its role in blood-feeding and transmission of pathogens started in the late 1980s and led to a number of discoveries on the composition and function of salivary molecules, some of which are associated with pathogen transmission. The study by Jones et al. published in 1989 can be ranked among the pioneer works in this field as it demonstrated for the first time the role of tick salivary glands in enhancement of transmission of a tick-borne virus. Thogoto virus was used in the model and subsequently similar results were obtained for tick-borne encephalitis virus. After a relatively silent period of almost 20 years, interest in tick-arbovirus-host interactions emerged again in the 2010s. However, no particular salivary molecule(s) enhancing virus transmission has (have) been identified to date. Intensive research in this field will certainly lead to new discoveries with future implications in the control of transmission of dangerous tick-borne viruses.

11.
Microbiol Spectr ; 10(5): e0111522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36214702

RESUMEN

Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.


Asunto(s)
Phlebovirus , Virus ARN , Enfermedades por Picaduras de Garrapatas , Garrapatas , Virus , Humanos , Animales , Filogenia , Viroma/genética , Phlebovirus/genética , Virus ARN/genética , China , Virus/genética , Enfermedades por Picaduras de Garrapatas/epidemiología
12.
Front Microbiol ; 13: 966735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033874

RESUMEN

Tick-borne viruses (TBVs) have increasingly caused a global public health concern. This study collected Rhipicephalus ticks in Guangdong, southern China to identify RNA viruses. Meta-transcriptome analysis revealed the virome in Rhipicephalus ticks, resulting in the discovery of 10 viruses, including Lihan tick virus, Brown dog tick phlebovirus 1 and 2 in the family Phenuiviridae, Mivirus and Wuhan tick virus 2 in the family Chuviridae, Wuhan tick virus 1 in the family Rhabdoviridae, bovine hepacivirus in the family Flaviviridae, Guangdong tick quaranjavirus (GTQV) in the family Orthomyxoviridae, Guangdong tick orbivirus (GTOV) in the family Reoviridae, and Guangdong tick Manly virus (GTMV) of an unclassified family. Phylogenetic analysis showed that most of these TBVs were genetically related to the strains in countries outside China, and GTQV, GTOV, and GTMV may represent novel viral species. These findings provided evidence of the long-distance spread of these TBVs in Guangdong, southern China, suggesting the necessity and importance of TBV surveillance.

13.
Microbiol Spectr ; 10(4): e0203422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35916407

RESUMEN

Tick infestations have been reported as one of the factors threatening the health of giant pandas, but studies of viral pathogens carried by ticks feeding on the blood of giant pandas are limited. To assess whether blood-sucking ticks of giant pandas can carry viral pathogens and if so, whether the viruses in ticks are associated with those previously detected in giant panda hosts, we determined the viromes of ticks detached from giant pandas in a field stocking area in Sichuan Province, southwest China. Using viral metagenomics we identified 32 viral species in ticks, half of which (including anellovirus [n = 9], circovirus [n = 3], and gemycircularvirus [n = 4]) showed homology to viruses carried by giant pandas and their associated host species (such as red pandas and mosquitoes) in the same living domain. Remarkably, several viruses in this study phylogenetically assigned as bunyavirus, hepe-like virus, and circovirus were detected with relatively high abundance, but whether these newly identified tick-associated viruses can replicate in ticks and then transmit to host animals during a blood meal will require further investigation. These findings further expand our understanding of the role of giant panda-infesting ticks in the local ecosystem, especially related to viral acquisition and transmission, and lay a foundation to assess the risk for giant panda exposure to tick-borne viruses. IMPORTANCE Ticks rank only second to mosquitoes as blood-feeding arthropods, capable of spreading pathogens (including viruses, bacteria, and parasites) to hosts during a blood meal. To better understand the relationship between viruses carried by ticks and viruses that have been reported in giant pandas, it is necessary to analyze the viromes of giant panda-parasitic blood-sucking ticks. This study collected 421 ticks on the body surface of giant pandas in Sichuan Province, China. We characterized the extensive genetic diversity of viruses harbored by these ticks and reported frequent communication of viruses between giant pandas and their ticks. While most of the virome discovered here are nonpathogenic viruses from giant pandas and potentially tick-specific viruses, we revealed some possible tick-borne viruses, represented by novel bunyaviruses. This research contributes to the literature because currently there are few studies on the virome of giant panda-infesting ticks.


Asunto(s)
Orthobunyavirus , Garrapatas , Ursidae , Virus , Animales , Ecosistema , Viroma/genética , Virus/genética
14.
Emerg Infect Dis ; 28(2): 436-439, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35075999

RESUMEN

Oz virus is a novel thogotovirus isolated from ticks that causes lethal infection in mice. We conducted serosurveillance of Oz virus infection among humans and wild mammals in Japan using virus-neutralization tests and ELISAs. Results showed that Oz virus may be naturally infecting humans and other mammalian hosts.


Asunto(s)
Thogotovirus , Garrapatas , Animales , Japón/epidemiología , Mamíferos , Ratones , Zoonosis
15.
Ticks Tick Borne Dis ; 13(1): 101860, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763307

RESUMEN

In Japan, tick-borne viruses such as tick-borne encephalitis virus (TBEV) and severe fever with thrombocytopenia syndrome virus have been identified in humans, animals, and ticks. In addition, novel tick-borne viruses have been isolated from ticks in Japan. This study aimed to determine the seroprevalence of TBEV and novel viruses, particularly Tofla virus (TFLV), Kabuto Mountain virus (KAMV), and Muko virus (MUV) in wild boar in Nagasaki, Japan. Enzyme-linked immunosorbent assays and neutralization tests were performed to detect antibodies against each virus. Wild boar serum tested positive for antibodies against KAMV, TFLV, and TBEV, but not MUV. This study revealed the seroprevalence of newly identified tick-borne viruses and TBEV in animals residing in the Nagasaki area. The seroprevalence of these viruses in sentinel animals may inform policies aimed at preventing tick-borne virus disease outbreaks.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Animales , Anticuerpos Antivirales , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Japón/epidemiología , Estudios Seroepidemiológicos , Sus scrofa , Porcinos
16.
Emerg Microbes Infect ; 10(1): 1975-1987, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34570681

RESUMEN

ABSTRACTTick-borne viruses (TBVs) capable of transmitting between ticks and hosts have been increasingly recognized as a global public health concern. In this study, Hyalomma ticks and serum samples from camels were collected using recorded sampling correlations in eastern Kenya. Viromes of pooled ticks were profiled by metagenomic sequencing, revealing a diverse community of viruses related to at least 11 families. Five highly abundant viruses, including three novel viruses (Iftin tick virus, Mbalambala tick virus [MATV], and Bangali torovirus [BanToV]) and new strains of previously identified viruses (Bole tick virus 4 [BLTV4] and Liman tick virus [LMTV]), were characterized in terms of genome sequences, organizations, and phylogeny, and their molecular prevalence was investigated in individual ticks. Moreover, viremia and antibody responses to these viruses have been investigated in camels. MATV, BLTV4, LMTV, and BanToV were identified as viral pathogens that can potentially cause zoonotic diseases. The transmission patterns of these viruses were summarized, suggesting three different types according to the sampling relationships between viral RNA-positive ticks and camels positive for viral RNA and/or antibodies. They also revealed the frequent transmission of BanToV and limited but effective transmission of other viruses between ticks and camels. Furthermore, follow-up surveys on TBVs from tick, animal, and human samples with definite sampling relationships are suggested. The findings revealed substantial threats from the emerging TBVs and may guide the prevention and control of TBV-related zoonotic diseases in Kenya and in other African countries.


Asunto(s)
Camelus/virología , Infecciones por Virus ARN/transmisión , Infecciones por Virus ARN/veterinaria , Virus ARN/genética , Enfermedades por Picaduras de Garrapatas/virología , Garrapatas/virología , Animales , Genoma Viral/genética , Humanos , Kenia/epidemiología , ARN Viral/genética , Infestaciones por Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Garrapatas/clasificación , Viroma/genética
17.
Ticks Tick Borne Dis ; 12(6): 101820, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555711

RESUMEN

Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.


Asunto(s)
Ixodidae/virología , Virus/aislamiento & purificación , Animales , Ixodidae/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/virología , Ninfa/crecimiento & desarrollo , Ninfa/virología , República de Corea , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/transmisión , Enfermedades por Picaduras de Garrapatas/virología
18.
Front Vet Sci ; 8: 637837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33855055

RESUMEN

The knowledge of the distribution, richness and epidemiological importance of soft ticks of the genus Argas is incomplete. In Spain, five Argas species have been recorded, including three ornitophilic nidicolous ticks, but their associated microorganisms remain unknown. This study aimed to investigate ticks from bird nests and their microorganisms. Ticks were collected extensively from natural cavities and nest-boxes used by European rollers (Coracias garrulus) and little owls (Athene noctua) in Southeastern and Central Spain. Ticks were morphologically and genetically identified and corresponding DNA/RNA tick extracts were analyzed [individually (n = 150) or pooled (n = 43)] using specific PCR assays for bacteria (Anaplasmataceae, Bartonella, Borrelia, Coxiella/Rickettsiella, and Rickettsia spp.), viruses (Flaviviruses, Orthonairoviruses, and Phenuiviruses), and protozoa (Babesia/Theileria spp.). Six Argas genotypes were identified, of which only those of Argas reflexus (n = 8) were identified to the species level. Two other genotypes were closely related to each other and to Argas vulgaris (n = 83) and Argas polonicus (n = 33), respectively. These two species have not been previously reported from Western Europe. Two additional genotypes (n = 4) clustered with Argas persicus, previously reported in Spain. The remaining genotype (n = 22) showed low sequence identity with any Argas species, being most similar to the African Argas africolumbae. The microbiological screening revealed infection with a rickettsial strain belonging to Rickettsia fournieri and Candidatus Rickettsia vini group in 74.7% of ticks, mainly comprising ticks genetically related to A. vulgaris and A. polonicus. Other tick endosymbionts belonging to Coxiella, Francisella and Rickettsiella species were detected in ten, one and one tick pools, respectively. In addition, one Babesia genotype, closely related to avian Babesia species, was found in one tick pool. Lastly, Anaplasmataceae, Bartonella, Borrelia, and viruses were not detected. In conclusion, five novel Argas genotypes and their associated microorganisms with unproven pathogenicity are reported for Spain. The re-use of nests between and within years by different bird species appears to be ideal for the transmission of tick-borne microorganisms in cavity-nesting birds of semiarid areas. Further work should be performed to clarify the taxonomy and the potential role of soft Argas ticks and their microorganisms in the epidemiology of zoonoses.

19.
J Wildl Dis ; 57(2): 282-291, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33822153

RESUMEN

In Norway, the Willow Ptarmigan (Lagopus lagopus lagopus) is experiencing population declines and is nationally Red Listed as Near Threatened. Although disease has not generally been regarded as an important factor behind population fluctuations for Willow Ptarmigan in Norway, disease occurrence has been poorly investigated. Both louping-ill virus (LIV) and the closely related tick-borne encephalitis virus are found along the southern part of the Norwegian coast. We assessed whether and where Norwegian Willow Ptarmigan populations have been infected with LIV. We expected to find infected individuals in populations in the southernmost part of the country. We did not expect to find infected individuals in populations further north and at higher altitudes because of the absence of the main vector, the sheep tick (Ixodes ricinus). We collected serum samples on Nobuto filter paper and used a hemagglutination inhibition assay for antibodies against LIV. We collected data at both local and country-wide levels. For local sampling, we collected and analyzed 87 hunter-collected samples from one of the southernmost Willow Ptarmigan populations in Norway. Of these birds, only three positives (3.4%) were found. For the country-wide sampling, we collected serum samples from 163 Willow Ptarmigan carcasses submitted from selected locations all over the country. Of these birds, 32% (53) were seropositive for LIV or a cross-reacting virus. Surprisingly, we found seropositive individuals from locations across the whole country, including outside the known distribution of the sheep tick. These results suggest that either LIV or a cross-reacting virus infects ptarmigan in large parts of Norway, including at high altitudes and latitudes.


Asunto(s)
Enfermedades de las Aves/virología , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Galliformes , Meningoencefalomielitis Ovina/sangre , Animales , Enfermedades de las Aves/epidemiología , Meningoencefalomielitis Ovina/epidemiología , Noruega/epidemiología , Estudios Seroepidemiológicos , Pruebas Serológicas , Ovinos
20.
Dev Comp Immunol ; 119: 104012, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33484780

RESUMEN

Ticks, being obligate hematophagous arthropods, are exposed to various blood-borne pathogens, including arboviruses. Consequently, their feeding behavior can readily transmit economically important viral pathogens to humans and animals. With this tightly knit vector and pathogen interaction, the replication and transmission of tick-borne viruses (TBVs) must be highly regulated by their respective tick vectors to avoid any adverse effect on the ticks' biological development and viability. Knowledge about the tick-virus interface, although gaining relevant advances in recent years, is advancing at a slower pace than the scientific developments related to mosquito-virus interactions. The unique and complicated feeding behavior of ticks, compared to that of other blood-feeding arthropods, also limits the studies that would further elaborate the antiviral immunity of ticks against TBVs. Hence, knowledge of molecular and cellular immune mechanisms at the tick-virus interface, will further elucidate the successful viral replication of TBVs in ticks and their effective transmission to human and animal hosts.


Asunto(s)
Vectores Arácnidos/inmunología , Inmunidad Innata/inmunología , Infestaciones por Garrapatas/inmunología , Garrapatas/inmunología , Virus/inmunología , Animales , Vectores Arácnidos/genética , Vectores Arácnidos/virología , Hemolinfa/inmunología , Hemolinfa/metabolismo , Hemolinfa/virología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Modelos Inmunológicos , Glándulas Salivales/inmunología , Glándulas Salivales/metabolismo , Glándulas Salivales/virología , Infestaciones por Garrapatas/genética , Infestaciones por Garrapatas/virología , Garrapatas/genética , Garrapatas/virología , Replicación Viral/genética , Replicación Viral/inmunología , Virus/genética , Virus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA