Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.782
Filtrar
1.
Biomaterials ; 312: 122711, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39088911

RESUMEN

The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.

2.
Front Bioeng Biotechnol ; 12: 1450267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091971

RESUMEN

Treating brain diseases presents significant challenges due to neuronal degeneration, inflammation, and the intricate nature of the brain. Stimuli-responsive hydrogels, designed to closely resemble the brain's extracellular matrix, have emerged as promising candidates for controlled drug delivery and tissue engineering. These hydrogels have the unique ability to encapsulate therapeutic agents and release them in a controlled manner when triggered by environmental stimuli. This property makes them particularly suitable for delivering drugs precisely to targeted areas of the brain, while minimizing collateral damage to healthy tissue. Their preclinical success in treating various brain diseases in animal studies underscores their translational potential for human brain disease treatment. However, a deeper understanding of their long-term behavior, biodistribution, and biocompatibility within the brain remains crucial. Furthermore, exploring novel hydrogel systems and therapeutic combinations is paramount for advancing towards more effective treatments. This review summarizes the latest advancements in this field over the past 5 years, specifically highlighting preclinical progress with novel stimuli-responsive hydrogels for treating brain diseases.

3.
J Oral Biol Craniofac Res ; 14(5): 540-546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092136

RESUMEN

Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.

4.
Biomed Mater ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094620

RESUMEN

In tissue engineering, collaboration among experts from different fields is needed to design appropriate cell scaffolds and the required 3D environment. Osteochondral tissue engineering is particularly challenging due to the necessity to provide scaffolds that imitate structural and compositional differences of two neighboring tissues, articular cartilage and bone, and the required complex biophysical environments to cultivate such scaffolds. This work focuses on two key objectives: first, to develop bilayered osteochondral scaffolds based on gellan gum and bioactive glass, and second, to create a biomimetic environment for scaffold characterization by designing and utilization of novel dual-medium cultivation bioreactor chambers. Basic chemical engineering principles were utilized to aid both aims. First, a simple heat transport model based on one-dimensional conduction was applied as a guideline for bilayered scaffold preparation, leading to the formation of the gelatinous upper part and a macroporous lower part with a thin, well-integrated interfacial zone. Second, a novel cultivation chamber was developed to be used in a dynamic compression bioreactor to provide possibilities for flow of two different media, such as chondrogenic and osteogenic. These chambers were utilized for characterization of the novel scaffolds regarding bioactivity and stability under dynamic compression and fluid perfusion during 14 days, while flow distribution under different conditions was analyzed by a tracer method and residence time distribution analysis.

5.
Macromol Biosci ; : e2400136, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096155

RESUMEN

The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.

6.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095895

RESUMEN

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Asunto(s)
Folículo Ovárico , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Femenino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Andamios del Tejido/química , Animales , Poliésteres/química , Ingeniería de Tejidos/métodos , Ovinos , Ovario/crecimiento & desarrollo , Ovario/citología , Oogénesis/fisiología , Oogénesis/efectos de los fármacos , Bioingeniería/métodos , Técnicas Reproductivas Asistidas , Fertilización In Vitro/métodos
7.
Mar Biotechnol (NY) ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153015

RESUMEN

Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.

8.
Mater Today Bio ; 27: 101161, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39155941

RESUMEN

Bone regeneration using synthetic materials has a high rate of surgical site infection, resulting in severe pain for patients and often requiring revision surgery. We propose Ag3PO4-based surface modification and structural control of scaffolds for preventing infections in bone regeneration. We demonstrated the differences in toxicity and antibacterial activity between in vitro and in vivo studies and determined the optimal silver content in terms of overall anti-infection effects, bone regeneration, toxicity, and pigmentation. A honeycomb structure comprising osteoconductive and resorbable carbonate apatite (CAp) was used as the base scaffold. CAp in the scaffold surface was partially replaced with different concentrations of Ag3PO4 via controlled dissolution-precipitation reactions in an AgNO3 solution. Both bone regeneration and infection prevention were achieved at 860-2300 ppm of silver. Despite the absence of Ag3PO4, honeycomb scaffolds were less susceptible to infection, even under conditions where infection occurs in clinically used three-dimensional porous scaffolds. Regardless of in vitro cytotoxicity at >5200 ppm of silver, increasing the silver content to 21,000 ppm did not adversely affect in vivo bone formation and scaffold resorption or cause acute systemic toxicity. Rather, bone formation was enhanced with 5200 ppm of silver. However, pigmentation was observed at that concentration. Hence, we concluded that the optimal silver concentration range is 860-2300 ppm for anti-infective and pigmentation-free bone regeneration. Bone regeneration was achieved via surface modification, resulting in the rapid release of silver ions immediately after implantation, followed by gradual release over several months. The scaffold structure may also aid in preventing bacterial growth within the scaffolds.

9.
Cureus ; 16(7): e64813, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156262

RESUMEN

Background With three-dimensional (3D) bioprinting emerging as the ultimate pinnacle of personalised treatment for achieving predictable regenerative outcomes, the search for tissue-specific bioinks is on. Decellularised extracellular matrix (DECM), which provides the inherent biomimetic cues, has gained considerable attention. The objective of the present study was to compare the efficacy of three different demineralisation protocols to obtain DECM for bone tissue engineering applications.  Methodology Goat femurs were treated using three demineralisation protocols to obtain DECM. Group A was treated with demineralisation solution at 40 rpm for 14 days, Group B with freeze-thaw cycles and 0.05M hydrochloric acid (HCl) and 2.4 mM ethylenediamine tetra-acetic acid (EDTA) at 40 rpm for 60 days, and Group C with 0.1M HCl at 40 rpm for three days. After washing, neutralization, 0.05% trypsin-EDTA treatment for 24 hours, and lyophilisation, DECM was obtained. Assessments included scanning electron microscope (SEM) analysis, energy dispersive X-ray (EDX) analysis, hematoxylin and eosin (H&E) staining, and biocompatibility analysis.  Results On comparative analysis, the protocol followed by Group C revealed good surface properties with patent and well interconnected pores with an average pore size of 218.87µm. Group C also revealed carbon and oxygen as predominant components with trace amounts of calcium, proving adequate demineralisation. Group C further revealed optimal demineralisation and decellularisation under histological analysis while maintaining biocompatibility. DECM obtained in Group C should be further processed for bioprinting applications.  Conclusion The three protocols explored in this study hold potential, with Group C's protocol demonstrating the most promise for DECM-based bioink applications. Further research is needed to evaluate the suitability of the obtained DECM for preparing tissue-specific bioinks for 3D bioprinting.

10.
JID Innov ; 4(5): 100298, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157429

RESUMEN

The Reconstructed Human Epidermis (RHE) model derived from epidermal keratinocytes offers an ethical and scientific alternative to animal experimentation, particularly in cutaneous toxicology and dermatological research, where the elimination of animal cruelty is of paramount importance. Thus, we compared commercially available chemically defined animal origin-free (cdAOF) supplements, designed for regenerative medicine, to the widely utilized supplement (human keratinocyte growth supplement), which contains growth factors and bovine pituitary extract. Herein we present the extended characterization of RHE derived from newborn, adult, and immortalized N/telomerase reverse transcriptase keratinocytes under cdAOF conditions. Culture of RHE in the cdAOF media produced histological features that were similar to that produced using human keratinocyte growth supplement, with the exception that the basal keratinocytes were less cylindrical. Additionally, immunolocalization of involucrin in the basal layer and increased mRNA expression of several inflammatory-proliferative markers were observed under cdAOF conditions. In RHEs cultured in cdAOF media, expression and immunolocalization of other expected markers of keratinization were similar, while monitoring of barrier function (transepithelial electrical resistance) revealed results that were statistically equal to, or lower than those observed in RHE cultured in human keratinocyte growth supplement. Our study indicates that reconstruction of RHE was accomplished under cdAOF culture conditions and that further refinement could promote an expanded use beyond regenerative medicine, for in vitro toxicology applications.

11.
Front Bioeng Biotechnol ; 12: 1434323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157444

RESUMEN

Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39159061

RESUMEN

Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 µm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.

13.
Adv Sci (Weinh) ; : e2405420, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159156

RESUMEN

Functional segmental trachea reconstruction is a critical concern in thoracic surgery, and tissue-engineered trachea (TET) holds promise as a potential solution. However, current TET falls short in fully restoring physiological function due to the lack of the intricate multi-tissue structure found in natural trachea. In this research, a multi-tissue integrated tissue-engineered trachea (MI-TET) is successfully developed by orderly assembling various cells (chondrocytes, fibroblasts and epithelial cells) on 3D-printed PGS bioelastomer scaffolds. The MI-TET closely resembles the complex structures of natural trachea and achieves the integrated regeneration of four essential tracheal components: C-shaped cartilage ring, O-shaped vascularized fiber ring, axial fiber bundle, and airway epithelium. Overall, the MI-TET demonstrates highly similar multi-tissue structures and physiological functions to natural trachea, showing promise for future clinical advancements in functional TETs.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39161137

RESUMEN

In the last few decades, the rates of infertility among women have been on the rise, usually due to complications with the uterus and related tissue. A wide variety of reasons can cause uterine factor infertility and can be congenital or a result of disease. Uterine transplantation is currently used as a means to enable women with fertility issues to have a natural birth. However, multiple risk factors are involved in uterine transplantation that threaten the lives of the growing fetus and the mother, as a result of which the procedure is not prominently practiced. Uterine tissue engineering provides a potential solution to infertility through the regeneration of replacement of damaged tissue, thus allowing healing and restoration of reproductive capacity. It involves the use of stem cells from the patient incorporated within biocompatible scaffolds to regenerate the entire tissue. This manuscript discusses the need for uterine tissue engineering, giving an overview of the biological and organic material involved in the process. There are numerous existing animal models in which this procedure has been actualized, and the observations from them have been compiled here. These models are used to develop a further understanding of the integration of engineered tissues and the scope of tissue engineering as a treatment for uterine disorders. Additionally, this paper examines the scope and limitations of the procedure.

15.
Biopolymers ; : e23623, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158278

RESUMEN

This work reports the assembly of mesoporous iron oxide nanoparticles (meso-MNPs) with cryogel scaffolds composed of chitosan and gelatin. Meso-MNPs with a particle size ranging from 2 and 50 nm, a surface area of 140.52 m2 g-1, and a pore volume of 0.27 cm3 g-1 were synthesized on a porous SiO2 template in the presence of PEG 6000 followed by leaching of SiO2. Different ratios of meso-MNPs were successfully incorporated into chitosan:gelatin cryogels up to an amount equivalent to the entire amount of polymer. The morphological structure and physicochemical properties of the cryogels were directly affected by the amount of MNPs. VSM curves showed that all composite cryogels could be magnetized by applying a magnetic field. In the context of the safety of magnetic cryogel scaffolds for use in biomedicine, it is important to note that all values are below the exposure limit for static magnetic fields, and according to cytotoxicity data, scaffolds containing meso-MNPs showed nontoxicity with cell viability ranging from 150% to 275%. In addition, microbial analysis with gram-negative and gram-positive bacteria showed that the scaffolds exhibited activity against these bacteria.

16.
J Wound Care ; 33(8): 612-616, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39140406

RESUMEN

There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.


Asunto(s)
Amnios , Ingeniería de Tejidos , Cicatrización de Heridas , Humanos , Amnios/trasplante , Heridas y Lesiones/terapia , Medicina Regenerativa/métodos
17.
Ann Transl Med ; 12(4): 73, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118948

RESUMEN

Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs. Recent evidence also showed that MSCs are the strong candidate to be used as stem cell therapy involving cardiovascular regeneration due to its cardiomyogenesis, anti-inflammatory and immunomodulatory properties, antifibrotic effects and neovascularization capacity. Besides, MSCs could be used for cellular cardiomyoplasty with its transdifferentiation of MSCs into cardiomyocytes, paracrine effects, microvesicles and exosomes as well as mitochondrial transfer. The safety and efficacy of utilizing MSCs have been described in well-established preclinical and clinical studies in which the accomplishment of MSCs transplantation resulted in further improvement of the cardiac function. Tissue engineering could enhance the desired properties and therapeutic effects of MSCs in cardiovascular regeneration by genome-editing, facilitating the cell delivery and retention, biomaterials-based scaffold, and three-dimensional (3D)-bioprinting. However, there are still obstacles in the use of MSCs due to the complexity and versatility of MSCs, low retention rate, route of administration and the ethical and safety issues of the use of MSCs. The aim of this review is to highlight the details of therapeutic properties of MSCs in treating CVDs, strategies to facilitate the therapeutic effects of MSCs through tissue engineering and the challenges faced using MSCs. A comprehensive review has been done through PubMed and National Center for Biotechnology Information (NCBI) from the year of 2010 to 2021 based on some specific key terms such as 'mesenchymal stem cells in cardiovascular disease', 'mesenchymal stem cells in cardiac regeneration', 'mesenchymal stem cells facilitate cardiac repairs', 'tissue engineering of MSCs' to include relevant literature in this review.

18.
Biomed Mater Eng ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121111

RESUMEN

BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young's modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.

19.
Adv Eng Mater ; 26(6)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39100393

RESUMEN

Electrical stimulation has shown promise in clinical studies to treat nerve injuries. This work is aimed to create an aligned bioelectronic construct that can be used to bridge a nerve gap, directly interfacing with the damaged nerve tissue to provide growth support. The conductive three-dimensional bioelectronic scaffolds described herein are composite materials, comprised of conductive polypyrrole (PPy) nanoparticles embedded in an aligned collagen hydrogel. The bioelectronic constructs are seeded with dorsal root ganglion derived primary rat neurons and electrically stimulated in vitro. The PPy loaded constructs support a 1.7-fold increase in neurite length in comparison to control collagen constructs. Furthermore, upon electrical stimulation of the PPy-collagen construct, a 1.8-fold increase in neurite length is shown. This work illustrates the potential of bioelectronic constructs in neural tissue engineering and lays the groundwork for the development of novel bioelectronic materials for neural interfacing applications.

20.
Front Bioeng Biotechnol ; 12: 1391728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132253

RESUMEN

Introduction: Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods: Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion: The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA